Fish Physiology and Biochemistry

, Volume 43, Issue 2, pp 641–651 | Cite as

Characterization of duplicated heme oxygenase-1 genes and their responses to hypoxic stress in blunt snout bream (Megalobrama amblycephala)



The heme oxygenase (HO)-1 is a cytoprotective enzyme that can be involved in cytoprotection against hypoxia stress. In this study, we cloned duplicated HO-1a and HO-1b cDNAs in hypoxia-sensitive blunt snout bream (Megalobrama amblycephala). HO-1a and HO-1b encode peptides with 272 amino acids and 246 amino acids, respectively, and they share a low sequence identity of 55%. HO-1a and HO-1b mRNAs were maternally deposited in the zygote, and the mRNAs decreased to the lowest levels at 8 hpf. Both mRNAs were significantly (p < 0.01) expressed from 12 hpf and fluctuated but maintained a high level after 16 hpf. Using in situ hybridization, HO-1a and HO-1b mRNAs were ubiquitously expressed in embryos at 12 hpf. At 24 and 36 hpf, HO-1b transcripts were detected in the mid- and hindbrain, respectively, whereas HO-1a was mainly transcribed in the eyes and endoderm at 24 hpf and in the brain at 36 hpf. In adult fish, HO-1a was abundantly expressed in the heart, liver, gill, kidney, spleen, and brain, while HO-1b mRNA was detected mainly in the kidney. After exposure to hypoxic stress, both HO-1a and HO-1b mRNAs were upregulated significantly in the gill and liver but downregulated significantly in the brain (p < 0.01). These findings suggest that duplicated HO genes have evolved divergently and yet play overlapping biological roles in regulating the response to hypoxia in M. amblycephala.


Megalobrama amblycephala heme oxygenase-1 Gene duplication Expression Hypoxia stress 



This work was supported by grants from the Key Technologies Research and Development Program of China (2012BAD26B02), the National Natural Science Foundation of China (31272633; 31201760; 31572220), and the Shanghai University Knowledge Service Platform (ZF1206).


  1. Chung SW, Hall SR, Perrella MA (2009) Role of haem oxygenase-1 in microbial host defence. Cell Microbiol 11(2):199–207CrossRefPubMedGoogle Scholar
  2. Dabruzzi TF, Bennett WA (2014) Hypoxia effects on gill surface area and blood oxygen-carrying capacity of the Atlantic stingray, Dasyatis sabina. Fish Physiol Biochem 40(4):1011–1020PubMedGoogle Scholar
  3. Dhillon RS, Yao L, Matey V, Chen BJ, Zhang AJ, Cao ZD, Fu SJ, Brauner CJ, Wang YS, Richards JG (2013) Interspecific differences in hypoxia-induced gill remodeling in carp. Physiol Biochem Zool 86(6):727–739CrossRefPubMedGoogle Scholar
  4. Fuse Y, Nakajima H, Nakajima-Takagi Y, Nakajima O, Kobayashi M (2015) Heme-mediated inhibition of Bach1 regulates the liver specificity and transience of the Nrf2-dependent induction of zebrafish heme oxygenase 1. Genes Cells 20(7):590–600CrossRefPubMedGoogle Scholar
  5. Ge X, Miao M (2011) Research progress of freshwater fish industry development and present situation in China. Chinese Fishery Quality and Standards 1(3):22–31Google Scholar
  6. Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354CrossRefPubMedGoogle Scholar
  7. Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98(4):1993–1998CrossRefPubMedPubMedCentralGoogle Scholar
  8. Guo X, Huang C, Shen R, Jiang X, Chen J, Zou S (2013) Insertion efficiency of Tgf2 transposon in the genome of Megalobrama amblycephala. Hereditas 35(8):999–1006CrossRefPubMedGoogle Scholar
  9. Hachfi L, Simide R, Richard S, Couvray S, Coupe S, Gaillard S, Pierre S, Grillasca JP, Prevot-D’Alvise N (2012) Effect of water temperature increase on HO-1 expression in European sea bass (Dicentrarchus labrax L.) tissues. Cell Mol Biol (Noisy-le-grand) 57(Suppl.58):OL1752–OL1756Google Scholar
  10. Jeon YS, Lee K, Park SC, Kim BS, Cho YJ, Ha SM, Chun J (2014) EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 64(2):689–691CrossRefPubMedGoogle Scholar
  11. Karim MR, Sekine M, Ukita M (2003) A model of fish preference and mortality under hypoxic water in the coastal environment. Mar Pollut Bull 47(1–6):25–29CrossRefPubMedGoogle Scholar
  12. Ke H (1965) The artificial reproduction and culture experiment of blunt snout bream. Acta Hydrobiol Sin 5:282–283Google Scholar
  13. Kikuchi G, Yoshida T, Noguchi M (2005) Heme oxygenase and heme degradation. Biochem Biophys Res Commun 338(1):558–567CrossRefPubMedGoogle Scholar
  14. Li S, Cai W (2003) Genetic improvement of the herbivorous blunt snout bream (Megalobrama amblycephala). NAGA, WorlFish Center Quaterly 26(1):3Google Scholar
  15. Li S, Cai W, Zhou B (1993) Variation in morphology and biochemical genetic markers among populations of blunt snout bream. Aquaculture 111:117–127CrossRefGoogle Scholar
  16. Li F, Chen J, Jiang X, Zou S (2015) Transcriptome analysis of blunt snout bream (Megalobrama amblycephala) reveals putative differential expression genes related to growth and hypoxia. PLoS One 10(11):e0142801CrossRefPubMedPubMedCentralGoogle Scholar
  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  18. Long X, Wu G, Rozanski DJ, Boluyt MO, Crow MT, Lakatta EG (2001) Hypoxia-induced Haem Oxygenase-1 gene expression in neonatal rat cardiac myocytes. Heart Lung Circ 10(3):121–129CrossRefPubMedGoogle Scholar
  19. Maines MD, Panahian N (2001) The heme oxygenase system and cellular defense mechanisms. Do HO-1 and HO-2 have different functions? Adv Exp Med Biol 502:249–272CrossRefPubMedGoogle Scholar
  20. Martinez ML, Raynard EL, Rees BB, Chapman LJ (2011) Oxygen limitation and tissue metabolic potential of the African fish Barbus neumayeri: roles of native habitat and acclimatization. BMC Ecol 11:2CrossRefPubMedPubMedCentralGoogle Scholar
  21. Matey V, Richards JG, Wang Y, Wood CM, Rogers J, Davies R, Murray BW, Chen XQ, Du J, Brauner CJ (2008) The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii. J Exp Biol 211(7):1063–1074CrossRefPubMedGoogle Scholar
  22. McCoubrey WK, Huang TJ, Maines MD (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247(2):725–732CrossRefPubMedGoogle Scholar
  23. Mitrovic D, Dymowska A, Nilsson GE, Perry SF (2009) Physiological consequences of gill remodeling in goldfish (Carassius auratus) during exposure to long-term hypoxia. Am J Physiol Regul Integr Comp Physiol 297(1):R224–R234CrossRefPubMedGoogle Scholar
  24. Nikinmaa M (2002) Oxygen-dependent cellular functions—why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol A Mol Integr Physiol 133(1):1–16CrossRefPubMedGoogle Scholar
  25. Nilsson GE, Ostlund-Nilsson S (2004) Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes. Proc Biol Sci 271(Suppl 3):S30–S33CrossRefPubMedPubMedCentralGoogle Scholar
  26. Otterbein LE, Choi AM (2000) Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 279(6):L1029–L1037PubMedGoogle Scholar
  27. Ouyang M, Yu X, Chen DY (2001) The preliminary studies on oxygen consumption rate and asphyxia point of Megalobrama amblycephala in Poyang Lake. J Jiangxi Fish Sci Technol 4:20–22Google Scholar
  28. Padmini E, Tharani J (2015) Differential expression of HO-1 and CYP1A2 during up-regulation of ERK in stressed fish hepatocytes. Environ Monit Assess 187(1):41–47CrossRefGoogle Scholar
  29. Prabhakar NR, Semenza GL (2012) Gaseous messengers in oxygen sensing. J Mol Med (Berl) 90(3):265–272CrossRefGoogle Scholar
  30. Prabhakar NR, Dinerman JL, Agani FH, Snyder SH (1995) Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci USA 92(6):1994–1997CrossRefPubMedPubMedCentralGoogle Scholar
  31. Prevot-D’Alvise N, Pierre S, Gaillard S, Gouze E, Gouze JN, Aubert J, Richard S, Grillasca JP (2008) cDNA sequencing and expression analysis of Dicentrarchus labrax heme oxygenase-1. Cell Mol Biol 54(Suppl):1046–1054Google Scholar
  32. Rimoldi S, Terova G, Ceccuzzi P, Marelli S, Antonini M, Saroglia M (2012) HIF-1α mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. Mol Biol Rep 39:4009–4015CrossRefPubMedGoogle Scholar
  33. Saroglia M, Terova G, Stradis AD, Caputo AR (2002) Morphometric adaptations of sea bass gills to different dissolved oxygen partial pressure. J Fish Biol 60:1423–1430CrossRefGoogle Scholar
  34. Shen R, Jiang X, Pu J, Zou S (2010) HIF-1α and - genes in a hypoxia-sensitive teleost species Megalobrama amblycephala: cDNA cloning, expression and different responses to hypoxia. Comp Biochem Physiol B Biochem Mol Biol 157(3):273–280CrossRefPubMedGoogle Scholar
  35. Shibahara S, Yoshizawa M, Suzuki H, Takeda K, Meguro K, Endo K (1993) Functional analysis of cDNAs for two types of human heme oxygenase and evidence for their separate regulation. J Biochem 113(2):214–218CrossRefPubMedGoogle Scholar
  36. Sollid J, De Angelis P, Gundersen K, Nilsson GE (2003) Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. J Exp Biol 206(20):3667–3673CrossRefPubMedGoogle Scholar
  37. Sollid J, Rissanen E, Tranberg HK, Thorstensen T, Vuori KA, Nikinmaa M, Nilsson GE (2006) HIF-1α and iNOS levels in crucian carp gills during hypoxia-induced transformation. J Comp Physiol B 176(4):359–369CrossRefPubMedGoogle Scholar
  38. Stierhoff KL, Targett TE, Grecay PA (2003) Hypoxia tolerance of the mummichog: the role of access to the water surface. J Fish Biol 63:580–592CrossRefGoogle Scholar
  39. Sun C, Tao Y, Jiang X, Zou S (2011) IGF binding protein 1 is correlated with hypoxia-induced growth reduce and developmental defects in grass carp (Ctenopharyngodon idellus) embryos. Gen Comp Endocrinol 172(3):409–415CrossRefPubMedGoogle Scholar
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tao W, Wang L, Hou S, Li Z, Gui J, Zhong X (2014) Study on expression pattern and function of zebrafish HO1. Acta hydrobiologica sinica 38(2):209–215Google Scholar
  42. Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13(3):382–390CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61(2):748–755CrossRefPubMedPubMedCentralGoogle Scholar
  44. Terova G, Rimoldi S, Cora S, Bernardini G, Gornati R, Saroglia M (2008) Acute and chronic hypoxia affects HIF-1 alpha mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture 279:150–159CrossRefGoogle Scholar
  45. Terova G, Rimoldi S, Brambilla F, Saroglia M (2009) In vivo regulation of GLUT2 mRNA in sea bass (Dicentrarchus labrax) in response to acute and chronic hypoxia. Comparative Biochemistry and Physiology, Part B 152(4):306–316CrossRefGoogle Scholar
  46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tian Y, Chen J, Tao Y, Jiang X, Zou S (2014) Molecular cloning and function analysis of insulin-like growth factor-binding protein 1a in blunt snout bream (Megalobrama amblycephala). Zool Res 35(4):300–306PubMedGoogle Scholar
  48. Tzaneva V, Perry SF (2014) Heme oxygenase-1 (HO-1) mediated respiratory responses to hypoxia in the goldfish, Carassius auratus. Respir Physiol Neurobiol 199:1–8CrossRefPubMedGoogle Scholar
  49. Wang D, Zhong X, Qiao Z, Gui J (2008) Inductive transcription and protective role of fish heme oxygenase-1 under hypoxic stress. J Exp Biol 211(16):2700–2706CrossRefPubMedGoogle Scholar
  50. Wang H, Huang C, Chen N, Zhu K, Chen B, Wang W, Wang H (2015a) Molecular characterization and mRNA expression of HIF-prolyl hydroxylase-2 (phd2) in hypoxia-sensing pathways from Megalobrama amblycephala. Comp Biochem Physiol B Biochem Mol Biol 186:28–35CrossRefPubMedGoogle Scholar
  51. Wang Y, Li F, Qin B, Chen J, Jiang X, Zou S (2015b) Duplicated connective tissue growth factor genes in hypoxia-sensitive blunt snout bream Megalobrama amblycephala and their in vivo expression. Comp Biochem Physiol B Biochem Mol Biol 181:42–49CrossRefPubMedGoogle Scholar
  52. Wang Y, Lu Y, Zhang Y, Ning Z, Li Y, Zhao Q (2015c) The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet 47(6):625–631CrossRefPubMedGoogle Scholar
  53. Watanabe T, Hasegawa G, Yamamoto T, Hatakeyama K, Suematsu M, Naito M (2003) Expression of heme oxygenase-1 in rat ontogeny. Arch Histol Cytol 66(2):155–162CrossRefPubMedGoogle Scholar
  54. Watanabe S, Akagi R, Mori M, Tsuchiya T, Sassa S (2004) Marked developmental changes in heme oxygenase-1 (HO-1) expression in the mouse placenta: correlation between HO-1 expression and placental development. Placenta 25(5):387–395CrossRefPubMedGoogle Scholar
  55. Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46(11):1212–1219CrossRefPubMedGoogle Scholar
  56. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103(1):129–135CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yoshida T, Kikuchi G (1978) Features of the reaction of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system. J Biol Chem 253(12):4230–4236PubMedGoogle Scholar
  58. Yuan J, Su N, Wang M, Xie P, Shi Z, Li L (2012) Down-regulation of heme oxygenase-1 by SVCV infection. Fish Shellfish Immunol 32(2):301–306CrossRefPubMedGoogle Scholar
  59. Zhang Z, Wu RS, Mok HO, Wang Y, Poon WW, Cheng SH, Kong RY (2003) Isolation, characterization and expression analysis of a hypoxia-responsive glucose transporter gene from the grass carp, Ctenopharyngodon idellus. Eur J Biochem 270(14):3010–3017CrossRefPubMedGoogle Scholar
  60. Zhang D, Park WJ, Sun S, Xu Y, Li Y, Cui X, Kim NH (2011) Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation. J Reprod Dev 57(1):49–56CrossRefPubMedGoogle Scholar
  61. Zhang Q, Li F, Qin B, Chen J, Jiang X, Zou S (2015) Functional conservation and divergence of duplicated fibroblast growth factor receptor 1 (fgfr1) genes in blunt snout bream (Megalobrama amblycephala). Gene 573:225–232CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Key Laboratory of Freshwater Aquatic Genetic ResourcesShanghai Ocean UniversityShanghaiChina

Personalised recommendations