Fish Physiology and Biochemistry

, Volume 43, Issue 2, pp 619–630 | Cite as

IRS1 and IRS2: molecular characterization, tissue expression and transcriptional regulation by insulin in yellow catfish Pelteobagrus fulvidraco

  • Mei-Qin Zhuo
  • Ya-Xiong Pan
  • Kun Wu
  • Yi-Huan Xu
  • Li-Han Zhang
  • Zhi Luo
Article

Abstract

The insulin receptor substrate (IRS) proteins, in particular, IRS1 and IRS2, are the key downstream players of insulin signaling pathway and the regulation of lipid metabolism. In the present study, two genes of IRS (IRS1 and IRS2) were isolated and characterized from yellow catfish Pelteobagrus fulvidraco. Their molecular characterizations, tissue expressions, and transcriptional levels by insulin both in vivo and in vitro were determined. The validated complementary DNAs encoding for IRS1 and IRS2 were 3693 and 3177 bp in length, encoding proteins of 1230 and 1058 amino acid residues, respectively. Similarly to mammals, amino acid sequence alignment revealed that IRSs contained an N-terminal pleckstrin homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and several C-terminal multiple sites of tyrosine phosphorylation. Both IRS1 and IRS2 were widely expressed across the ten tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, and ovary), but at the variable levels. Insulin injection at 1 μg/g in vivo significantly stimulated the messenger RNA (mRNA) expression of IRS2, but not IRS1 mRNA expression levels in the liver of yellow catfish after 48 h. In hepatocytes of yellow catfish, insulin incubation significantly stimulated the IRS1 (at a 1000 nM insulin group) and IRS2 (at both 100 and 1000 nM insulin groups) mRNA expressions, which indicated that IRS2 was more sensitive than IRS1 to insulin stimulation in the liver of yellow catfish, and IRS2 played a more important role in mediating insulin’s effects on the liver metabolism. The present study serves to increase our understanding into the function of IRS in fish.

Keywords

Pelteobagrus fulvidraco Insulin receptor substrate Molecular characterization Tissue expression Insulin Transcriptional regulation 

Abbreviations

GAPDH

Glyceraldehyde-3-phosphate dehydrogenase

HPRT

Hypoxanthine-guanine phosphoribosyl transferase

IRS

Insulin receptor substrate

MS-222

Tricaine methanesulfonate

MW

Molecular weight

ORF

Open-reading frame

PI3K

Phosphoinositide 3-kiases

PH

Pleckstrin homology

PTB

Phosphotyrosine-binding

RPL7

Ribosomal protein L7

SH2

Src homology 2

TUBA

Tubulin alpha chain

UBCE

Ubiquitin-conjugating enzyme

UTR

Untranslated region

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31422056) and Fundamental Research Funds for the Central Universities, China (Grants Nos. 2014JQ002, 2662015PY017).

References

  1. Auger KR, Carpenter CL, Shoelson SE, Piwnica-Worms H, Cantley LC (1992) Polyoma virus middle T antigen-pp60c-src complex associates with purified phosphatidylinositol 3-kinase in vitro. J Biol Chem 267(8):5408–5415PubMedGoogle Scholar
  2. Backer JM, Myers MG Jr, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Schlessinger J (1992) Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 11(9):3469–3479PubMedPubMedCentralGoogle Scholar
  3. Brüning JC, Winnay J, Cheatham B, Kahn CR (1997) Differential signaling by insulin receptor substrate 1 (IRS-1) and IRS-2 in IRS-1-deficient cells. Mol Cell Biol 17(3):1513–1521CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278(28):25323–25330CrossRefPubMedGoogle Scholar
  5. Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55(10):2565–2582CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dai W, Panserat S, Plagnes-Juan E, Seiliez I, Skiba-Cassy S (2015) Amino acid attenuate insulin action on gluconeogenesis and promote fatty acid biosynthesis via mTORC1 signaling pathway in trout hepatocytes. Cell Physiol Biochem 36:1084–1100CrossRefPubMedGoogle Scholar
  7. Dhe-Paganon S, Ottinger EA, Nolte RT, Eck MJ, Shoelson SE (1999) Crystal structure of the pleckstrin homology-phosphotyrosine binding (PH-PTB) targeting region of insulin receptor substrate 1. Proc Natl Acad Sci U S A 96(15):8378–8383CrossRefPubMedPubMedCentralGoogle Scholar
  8. Eck MJ, Dhe-Paganon S, Trüb T, Nolte RT, Shoelson SE (1996) Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85(5):695–705CrossRefPubMedGoogle Scholar
  9. Figueiredo-Silva AC, Panserat S, Kaushik S, Geurden I, Polakof S (2012) High levels of dietary fat impair glucose homeostasis in rainbow trout. J Exp Biol 215:169–178CrossRefPubMedGoogle Scholar
  10. Gibson SL, Ma Z, Shaw LM (2007) Divergent roles for IRS-1 and IRS-2 in breast cancer metastasis. Cell Cycle 6:631–637CrossRefPubMedGoogle Scholar
  11. Hadsell DL, Alexeenko T, Klemintidis Y, Torres D, Lee AV (2001) Inability of overexpressed des (1–3) human insulin-like growth factor I (IGF-I) to inhibit forced mammary gland involution is associated with decreased expression of IGF signaling molecules 1. Endocrinology 142(4):1479–1488Google Scholar
  12. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3):275–282PubMedGoogle Scholar
  13. Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE (1997) A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem 272(34):21403–21407CrossRefPubMedGoogle Scholar
  14. McGettrick AJ, Feener EP, Kahn CR (2005) Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J Biol Chem 280(8):6441–6446CrossRefPubMedGoogle Scholar
  15. Mori A, Lee P, Takemitsu H, Sako T, Arai T (2009) Comparison of insulin signaling gene expression in insulin sensitive tissues between cats and dogs. Vet Res Commun 33:211–226CrossRefPubMedGoogle Scholar
  16. O’Neill TJ, Craparo A, Gustafson TA (1994) Characterization of an interaction between insulin receptor substrate 1 and the insulin receptor by using the two-hybrid system. Mol Cell Biol 14(10):6433–6442CrossRefPubMedPubMedCentralGoogle Scholar
  17. Patti ME, Sun XJ, Bruning JC, Araki E, Lipes MA, White ME, Kahn CR (1995) 4PS/IRS-2 is the alternative substrate of the insulin receptor in IRS-1 deficient mice. J Biol Chem 270:24670–24673CrossRefPubMedGoogle Scholar
  18. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45–e45CrossRefPubMedPubMedCentralGoogle Scholar
  19. Shoelson SE, Chatterjee S, Chaudhuri M, White MF (1992) YMXM motifs of IRS-1 define substrate specificity of the insulin receptor kinase. Proc Natl Acad Sci U S A 89(6):2027–2031CrossRefPubMedPubMedCentralGoogle Scholar
  20. Seiliez I, Panserat S, Skiba-Cassy S, Polakof S (2011) Effect of acute and chronic insulin administrations on major factors involved in the control of muscle protein turnover in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocr 172(3):363–370CrossRefPubMedGoogle Scholar
  21. Smith-Hall J, Pons S, Patti ME, Burks DJ, Yenush L, Sun XJ, White MF (1997) The 60 kDa insulin receptor substrate functions like an IRS protein (pp60IRS3) in adipose cells. Biochemistry 36(27):8304–8310CrossRefPubMedGoogle Scholar
  22. Sun XJ, Miralpeix M, Myers MG, Glasheen EM, Backer JM, Kahn CR, White MF (1992) Expression and function of IRS-1 in insulin signal transmission. J Biol Chem 267(31):22662–22672PubMedGoogle Scholar
  23. Sun XJ, Wang LM, Zhang Y, Yenush L, Myers MG Jr, Glasheen E, Lane WS, Pierce JH, White MF (1995) Role of IRS-2 in insulin and cytokine signaling. Nature (London) 377:173–177CrossRefGoogle Scholar
  24. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, White MF (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352(6330):73–77CrossRefPubMedGoogle Scholar
  25. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, Sekihara H, Yoshioka S, Horikoshi H, Furuta Y, Ikawa Y, Kasuga M, Yazaki Y, Aizawa S (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372:182–186CrossRefPubMedGoogle Scholar
  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  27. Taniguchi CM, Ueki K, Kahn R (2005) Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest 115:718–727CrossRefPubMedPubMedCentralGoogle Scholar
  28. Taouis M, Taylor SI, Reitman M (1996) Cloning of the chicken insulin receptor substrate 1 gene. Gene 178(1):51–55CrossRefPubMedGoogle Scholar
  29. Thirone AC, Huang C, Klip A (2006) Tissue specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metabol 17:72–78CrossRefGoogle Scholar
  30. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De-Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):1–12CrossRefGoogle Scholar
  31. White MF (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 182(1–2):3–11CrossRefPubMedGoogle Scholar
  32. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904CrossRefPubMedGoogle Scholar
  33. Wolf G, Trüb T, Ottinger E, Groninga L, Lynch A, White MF, Shoelson SE (1995) PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J Biol Chem 270(46):27407–27410CrossRefPubMedGoogle Scholar
  34. Wu XK, Sallinen K, Anttila L, Mäkinen M, Luo C, Pöllänen P, Erkkola R (2000) Expression of insulin-receptor substrate-1 and-2 in ovaries from women with insulin resistance and from controls. Fertil Steril 74(3):564–572CrossRefPubMedGoogle Scholar
  35. Yamauchi T, Tobe K, Tamemoto H, Ueki K, Kaburagi Y, Yamamoto-Handa R, Takahadhi Y, Yoshizawa F, Aizawa S, Akanuma Y, Sonenberg N, Yazaki Y, Kadowaki T (1996) Insulin signaling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol 16:3074–3084CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhang S, Wu T, Chen M, Guo Z, Yang Z, Zuo Z, Wang C (2015) Chronic exposure to aroclor 1254 disrupts glucose homeostasis in male mice via inhibition of the insulin receptor signal pathway. Environ Sci Technol 49(16):10084–10092CrossRefPubMedGoogle Scholar
  37. Zhuo MQ, Luo Z, Pan YX, Wu K, Fan YF, Zhang LH, Song YF (2015) Effects of insulin and its related signaling pathways on lipid metabolism in the yellow catfish Pelteobagrus fulvidraco. J Exp Biol 218:3083–3090CrossRefPubMedGoogle Scholar
  38. Zhuo MQ, Luo Z, Wu K, Zhu QL, Zheng JL, Zhang LH, Chen QL (2014) Regulation of insulin on lipid metabolism in freshly isolated hepatocytes from yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol 177B:21–28CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P. R. C., Fishery CollegeHuazhong Agricultural UniversityWuhanChina
  2. 2.Freshwater Aquaculture Collaborative Innovative Centre of Hubei ProvinceWuhanChina

Personalised recommendations