Fish Physiology and Biochemistry

, Volume 43, Issue 2, pp 603–617 | Cite as

Enhanced dietary formulation to mitigate winter thermal stress in gilthead sea bream (Sparus aurata): a 2D-DIGE plasma proteome study

  • Denise Schrama
  • Nadège Richard
  • Tomé S. Silva
  • Filipe A. Figueiredo
  • Luís E.C. Conceição
  • Richard Burchmore
  • David Eckersall
  • Pedro M.L. Rodrigues


Low water temperatures during winter are common in farming of gilthead sea bream in the Mediterranean. This causes metabolic disorders that in extreme cases can lead to a syndrome called “winter disease.” An improved immunostimulatory nutritional status might mitigate the effects of this thermal metabolic stress. A trial was set up to assess the effects of two different diets on gilthead sea bream physiology and nutritional state through plasma proteome and metabolites. Four groups of 25 adult gilthead sea bream were reared during winter months, being fed either with a control diet (CTRL) or with a diet called “winter feed” (WF). Proteome results show a slightly higher number of proteins upregulated in plasma of fish fed the WF. These proteins are mostly involved in the immune system and cell protection mechanisms. Lipid metabolism was also affected, as shown both by plasma proteome and by the cholesterol plasma levels. Overall, the winter feed diet tested seems to have positive effects in terms of fish condition and nutritional status, reducing the metabolic effects of thermal stress.


Aquaculture Gilthead sea bream Plasma Winter disease Winter syndrome Thermal stress Proteomics 



This work is part of project 21595-INUTR, co-financed by FEDER through PO Algarve 21 in the framework of QREN 2007–2013. NR was supported by a postdoctoral grant (SFRH/BDP/65578/2009) from the Portuguese Foundation for Science and Technology (FCT).

Supplementary material

10695_2016_315_MOESM1_ESM.docx (54 kb)
Supplementary Figure 1 (DOCX 53 kb)


  1. Almeida AM et al (2015) Animal board invited review: advances in proteomics for animal and food sciences. Animal 9:1–17. doi: 10.1017/S1751731114002602 CrossRefPubMedGoogle Scholar
  2. Alves RN et al (2010) Metabolic molecular indicators of chronic stress in gilthead seabream (Sparus aurata) using comparative proteomics. Aquaculture 299:57–66. doi: 10.1016/j.aquaculture.2009.11.014 CrossRefGoogle Scholar
  3. Andersen F, Lygren B, Maage A, Waagbo R (1998) Interaction between two dietary levels of iron and two forms of ascorbic acid and the effect on growth, antioxidant status and some non-specific immune parameters in Atlantic salmon (Salmo salar) smolts. Aquaculture 161:437–451. doi: 10.1016/S0044-8486(97)00291-3 CrossRefGoogle Scholar
  4. Arends RJ, Mancera JM, Munoz JL, Wendelaar Bonga SE, Flik G (1999) The stress response of the gilthead sea bream (Sparus aurata L.) to air exposure and confinement. J Endocrinol 163:149–157CrossRefPubMedGoogle Scholar
  5. Bavcevic L, Petrovic S, Crnica M, Corazzin E (2006) Effects of feeding strategy on growth of sea bream (Sparus aurata L.) during winter-spring and possible implications for “winter disease” syndrome. Croat J Fish 64:1–17Google Scholar
  6. Bayne CJ, Gerwick L (2001) The acute phase response and innate immunity of fish. Dev Comp Immunol 25:725–743. doi: 10.1016/S0145-305x(01)00033-7 CrossRefPubMedGoogle Scholar
  7. Bayne CJ, Gerwick L, Fujiki K, Nakao M, Yano T (2001) Immune-relevant (including acute phase) genes identified in the livers of rainbow trout, Oncorhynchus mykiss, by means of suppression subtractive hybridization. Dev Comp Immunol 25:205–217. doi: 10.1016/S0145-305x(00)00057-4 CrossRefPubMedGoogle Scholar
  8. Boshra H, Li J, Sunyer JO (2006) Recent advances on the complement system of teleost fish. Fish Shellfish Immunol 20:239–262. doi: 10.1016/j.fsi.2005.04.004 CrossRefPubMedGoogle Scholar
  9. Caraux G, Pinloche S (2005) PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21:1280–1281. doi: 10.1093/bioinformatics/bti141 CrossRefPubMedGoogle Scholar
  10. Castillo-Briceno P, Arizcun-Arizcun M, Meseguer J, Mulero V, Garcia-Ayala A (2010) Correlated expression profile of extracellular matrix-related molecules during the inflammatory response of the teleost fish gilthead seabream. Dev Comp Immunol 34:1051–1058. doi: 10.1016/j.dci.2010.05.007 CrossRefPubMedGoogle Scholar
  11. Chen M, Daha MR, Kallenberg CGM (2010) The complement system in systemic autoimmune disease. J Autoimmun 34:J276–J286. doi: 10.1016/j.jaut.2009.11.014 CrossRefPubMedGoogle Scholar
  12. Conceicao LEC, Aragao C, Dias J, Costas B, Terova G, Martins C, Tort L (2012) Dietary nitrogen and fish welfare. Fish Physiol Biochem 38:119–141. doi: 10.1007/s10695-011-9592-y CrossRefPubMedGoogle Scholar
  13. Concha MI, Molina S, Oyarzun C, Villanueva J, Amthauer R (2003) Local expression of apolipoprotein A-I gene and a possible role for HDL in primary defence in the carp skin. Fish Shellfish Immunol 14:259–273. doi: 10.1006/fsim.2002.0435 CrossRefPubMedGoogle Scholar
  14. Concha MI, Smith VJ, Castro K, Bastias A, Romero A, Amthauer RJ (2004) Apolipoproteins A-I and A-II are potentially important effectors of innate immunity in the teleost fish Cyprinus carpio. Eur J Biochem 271:2984–2990. doi: 10.1111/j.1432-1033.2004.04228.x CrossRefPubMedGoogle Scholar
  15. Costas B et al (2012) Effects of dietary amino acids and repeated handling on stress response and brain monoaminergic neurotransmitters in Senegalese sole (Solea senegalensis) juveniles. Comp Biochem Physiol A Mol Integr Physiol 161:18–26. doi: 10.1016/j.cbpa.2011.08.014 CrossRefPubMedGoogle Scholar
  16. Davis P (1988) Two occurrences of the gilthead, Sparus aurata Linnaeus 1758, on the coast of Northumberland. England J Fish Biol 33:951–952. doi: 10.1111/j.1095-8649.1988.tb05545.x CrossRefGoogle Scholar
  17. Dias J, Conceicao LEC, Ribeiro AR, Borges P, Valente LMP, Dinis MT (2009) Practical diet with low fish-derived protein is able to sustain growth performance in gilthead seabream (Sparus aurata) during the grow-out phase. Aquaculture 293:255–262. doi: 10.1016/j.aquaculture.2009.04.042 CrossRefGoogle Scholar
  18. Dietrich MA et al (2010) Isolation and characterization of transferrin from common carp (Cyprinus carpio L.) seminal plasma. Fish Shellfish Immunol 29:66–74. doi: 10.1016/j.fsi.2010.02.015 CrossRefPubMedGoogle Scholar
  19. FAO (2012) The state of world fisheries and aquaculture 2012, Rome, p 209Google Scholar
  20. Feidantsis K, Antonopoulou E, Lazou A, Portner HO, Michaelidis B (2013) Seasonal variations of cellular stress response of the gilthead sea bream (Sparus aurata). J Comp Physiol B 183:625–639. doi: 10.1007/s00360-012-0735-y CrossRefPubMedGoogle Scholar
  21. Garcia-Fernandez C, Sanchez JA, Blanco G (2011) Characterization of the gilthead seabream (Sparus aurata L.) transferrin gene: genomic structure, constitutive expression and SNP variation. Fish Shellfish Immunol 31:548–556. doi: 10.1016/j.fsi.2011.07.003 PubMedGoogle Scholar
  22. Gettins PGW (2002) Serpin structure, mechanism, and function. Chem Rev 102:4751–4803. doi: 10.1021/Cr010170+ CrossRefPubMedGoogle Scholar
  23. Ghisaura S et al (2014) Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Sci 12. doi: 10.1186/s12953-014-0044-3
  24. Holers VM (2014) Complement and its receptors: new insights into human disease. Annu Rev Immunol 32:433–459. doi: 10.1146/annurev-immunol-032713-120154 CrossRefPubMedGoogle Scholar
  25. Ibarz A, Beltran M, Fernandez-Borras J, Gallardo MA, Sanchez J, Blasco J (2007) Alterations in lipid metabolism and use of energy depots of gilthead sea bream (Sparus aurata) at low temperatures. Aquaculture 262:470–480. doi: 10.1016/j.aquaculture.2006.11.008 CrossRefGoogle Scholar
  26. Ibarz A, Martin-Perez M, Blasco J, Bellido D, de Oliveira E, Fernandez-Borras J (2010a) Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 10:963–975. doi: 10.1002/pmic.200900528 PubMedGoogle Scholar
  27. Ibarz A, Padros F, Gallardo MA, Fernandez-Borras J, Blasco J, Tort L (2010b) Low-temperature challenges to gilthead sea bream culture: review of cold-induced alterations and ‘winter syndrome’. Rev Fish Biol Fisher 20:539–556. doi: 10.1007/s11160-010-9159-5 CrossRefGoogle Scholar
  28. Kaiserman D, Bird PI (2005) Analysis of vertebrate genomes suggests a new model for clade B serpin evolution. BMC Genomics 6:167–177. doi: 10.1186/1471-2164-6-167 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kikuchi K, Watabe S, Aida K (1997) The Wap65 gene expression of goldfish (Carassius auratus) in association with warm water temperature as well as bacterial lipopolysaccharide (LPS). Fish Physiol Biochem 17:423–432. doi: 10.1023/A:1007768531655 CrossRefGoogle Scholar
  30. Laiz-Carrion R, Del Rio MPM, Miguez JM, Mancera JM, Soengas JL (2003) Influence of cortisol on osmoregulation and energy metabolism in gilthead seabream Sparus aurata. J Exp Zool Part A 298A:105–118. doi: 10.1002/Jez.A.10256 CrossRefGoogle Scholar
  31. Liang P, MacRae TH (1997) Molecular chaperones and the cytoskeleton. J Cell Sci 110:1431–1440PubMedGoogle Scholar
  32. Lopez-Olmeda JF, Montoya A, Oliveira C, Sanchez-Vazquez FJ (2009) Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata). Chronobiol Int 26:1389–1408. doi: 10.3109/07420520903421922 CrossRefPubMedGoogle Scholar
  33. Magnadottir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151. doi: 10.1016/j.fsi.2004.09.006 CrossRefPubMedGoogle Scholar
  34. Mao L, Bryantsev AL, Chechenova MB, Shelden EA (2005) Cloning, characterization, and heat stress-induced redistribution of a protein homologous to human hsp27 in the zebrafish Danio rerio. Exp Cell Res 306:230–241. doi: 10.1016/j.yexer.2005.02.007 CrossRefPubMedGoogle Scholar
  35. Marvin M, O’Rourke D, Kurihara T, Juliano CE, Harrison KL, Hutson LD (2008) Developmental expression patterns of the zebrafish small heat shock proteins. Dev Dynam 237:454–463. doi: 10.1002/Dvdy.21414 CrossRefGoogle Scholar
  36. Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperon 7:167–176. doi: 10.1379/1466-1268(2002)007<0167:Acashs>2.0.Co;2 CrossRefGoogle Scholar
  37. Nynca J, Dietrich MA, Karol H, Ciereszko A (2010) Identification of apolipoprotein C-I in rainbow trout seminal plasma. Reprod Fert Develop 22:1183–1187. doi: 10.1071/Rd10066 CrossRefGoogle Scholar
  38. Ortuno J, Esteban MA, Meseguer J (1999) Effect of high dietary intake of vitamin C on non-specific immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 9:429–443. doi: 10.1006/fsim.1998.0201 CrossRefGoogle Scholar
  39. Ortuno J, Esteban MA, Meseguer J (2001) Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L) innate immune response. Fish Shellfish Immunol 11:187–197. doi: 10.1006/fsim.2000.0304 CrossRefPubMedGoogle Scholar
  40. Piras C et al (2014) Serum protein profiling of early and advanced stage Crohn’s disease. EuPA Open Proteomics 3:48–59. doi: 10.1016/j.euprot.2014.02.010 CrossRefGoogle Scholar
  41. Rodrigues PM, Silva TS, Dias J, Jessen F (2012) PROTEOMICS in aquaculture: applications and trends. J Proteome 75:4325–4345. doi: 10.1016/j.jprot.2012.03.042 CrossRefGoogle Scholar
  42. Rotllant J, Balm PHM, Wendelaar-Bonga SE, Perez-Sanchez J, Tort L (2000) A drop in ambient temperature results in a transient reduction of interrenal ACTH responsiveness in the gilthead sea bream (Sparus aurata, L.). Fish Physiol Biochem 23:265–273CrossRefGoogle Scholar
  43. Sala-Rabanal M, Sanchez J, Ibarz A, Fernandez-Borras J, Blasco J, Gallardo MA (2003) Effects of low temperatures and fasting on hematology and plasma composition of gilthead sea bream (Sparus aurata). Fish Physiol Biochem 29:105–115CrossRefGoogle Scholar
  44. Silva TS, Cordeiro O, Richard N, Conceicao LE, Rodrigues PM (2011) Changes in the soluble bone proteome of reared white seabream (Diplodus sargus) with skeletal deformities. Comp Biochem Physiol Part D Genomics Proteomics 6:82–91. doi: 10.1016/j.cbd.2010.03.008 CrossRefPubMedGoogle Scholar
  45. Silva TS, Cordeiro OD, Matos ED, Wulff T, Dias JP, Jessen F, Rodrigues PM (2012a) Effects of preslaughter stress levels on the post-mortem sarcoplasmic proteomic profile of gilthead seabream muscle. J Agr Food Chem 60:9443–9453. doi: 10.1021/Jf301766e CrossRefGoogle Scholar
  46. Silva TS, da Costa AM, Conceicao LE, Dias JP, Rodrigues PM, Richard N (2014) Metabolic fingerprinting of gilthead seabream (Sparus aurata) liver to track interactions between dietary factors and seasonal temperature variations. PeerJ 2 . doi: 10.7717/peerj.527 e527
  47. Silva TS et al (2012b) Dietary tools to modulate glycogen storage in gilthead seabream muscle: glycerol supplementation. J Agric Food Chem 60:10613–10624. doi: 10.1021/jf3023244 CrossRefPubMedGoogle Scholar
  48. Sitja-Bobadilla A, Pena-Llopis S, Gomez-Requeni P, Medale F, Kaushik S, Perez-Sanehez J (2005) Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture 249:387–400. doi: 10.1016/j.aquaculture.2005.03.031 CrossRefGoogle Scholar
  49. Sola L, Moretti A, Crosetti D, Karaiskou N, Magoulas A, Rossi AR, Rye M, Triantafyllidis A, Tsigenopoulos CS (2006) Gilthead seabream—Sparus aurata. In: Crosetti D, Lapègue S, Olesen I, Svaasand T (eds) Genetic effects of domestication, culture and breeding of fish and shellfish, and their impacts on wild populations. GENIMPACT project: evaluation of genetic impact of aquaculture activities on native populations. A European network. WP1 workshop “Genetics of domestication, breeding and enhancement of performance of fish and shellfish”, Viterbo, Italy, 12–17th June, 2006, p 6Google Scholar
  50. Tibaldi E, Hakim Y, Uni Z, Tulli F, de Francesco M, Luzzana U, Harpaz S (2006) Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax). Aquaculture 261:182–193. doi: 10.1016/j.aquaculture.2006.06.026 CrossRefGoogle Scholar
  51. Tort L et al (2004) Effects of temperature decrease on feeding rates, immune indicators and histopathological changes of gilthead sea bream Sparus aurata fed with an experimental diet. Aquaculture 229:55–65. doi: 10.1016/S0044-8486(03)00403-4 CrossRefGoogle Scholar
  52. Tort L, Rotllant J, Rovira L (1998) Immunological suppression in gilthead sea bream Sparus aurata of the North-West Mediterranean at low temperatures. Comp Biochem Phys A 120:175–179CrossRefGoogle Scholar
  53. Umasuthan N et al (2011) Rock bream (Oplegnathus fasciatus) serpin, protease nexin-1: transcriptional analysis and characterization of its antiprotease and anticoagulant activities. Dev Comp Immunol 35:785–798. doi: 10.1016/j.dci.2011.03.013 CrossRefPubMedGoogle Scholar
  54. Watts M, Munday BL, Burke CM (2001) Immune responses of teleost fish. Aust Vet J 79:570–574CrossRefPubMedGoogle Scholar
  55. Xu XY, Shen YB, Yang XM, Li JL (2011) Cloning and characterization of TIMP-2b gene in grass carp. Comp Biochem Phys B 159:115–121. doi: 10.1016/j.cbpb.2011.02.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Denise Schrama
    • 1
  • Nadège Richard
    • 1
  • Tomé S. Silva
    • 2
  • Filipe A. Figueiredo
    • 1
  • Luís E.C. Conceição
    • 2
  • Richard Burchmore
    • 3
  • David Eckersall
    • 4
  • Pedro M.L. Rodrigues
    • 1
  1. 1.CCMAR, Center of Marine ScienceUniversity of AlgarveFaroPortugal
  2. 2.SPAROS, LdaOlhãoPortugal
  3. 3.Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
  4. 4.Institute of Biodiversity Animal Health and Comparative Medicine, School of Veterinary MedicineUniversity of GlasgowGlasgowUK

Personalised recommendations