Fish Physiology and Biochemistry

, Volume 43, Issue 2, pp 563–578 | Cite as

Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae

Article

Abstract

The effects of soybean meal (SBM) in early diet of Sparus aurata larvae at two developmental windows were assessed. Prolonged (beyond 14 days post-hatch, dph) feeding with SBM decreased the activity of pancreatic enzymes of larvae. In the absence of SBM these larvae later resumed enzyme activities, but exhibited a significant delay in development. Larvae response to SBM involved up-regulation of extracellular matrix remodeling enzymes and pro-inflammatory cytokines, coupled with a drop in putative intestinal enzymes. Larvae receiving SBM at first feeding appear later to have lower expression of inflammation-related genes, especially those fed SBM until 14 dph. Multivariate analysis confirmed that the duration of the SBM early feeding period drives the physiology of larvae in different directions. Feeding larvae with SBM increased global histone H3 acetylation, whereas upon removal of SBM the process was reverted. A more in deep analysis revealed a dynamic interplay among several reversible histone modifications such as H3K14ac and H3K27m3. Finally, we showed that SBM feeding of larvae results in global hypomethylation that persist after SBM removal. This study is the first demonstrating an effect of diet on marine fish epigenetics. It is concluded that there are limitations for extending SBM feeding of S. aurata larvae beyond 14 dph even under co-feeding with live feed, affecting key physiological processes and normal growth. However, up to 14 dph, SBM does not affect normal development, and produces apparently lasting effects on some key enzymes, genes, and chromatin modifications.

Keywords

Gilthead seabream Fish larvae Soybean meal Digestion Inflammation-related genes Chromatin modifications 

Notes

Acknowledgments

This research was funded by the European Union through the grant FISHPROG (326245). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the article. The views expressed in this work are the sole responsibility of the authors. Special thank to Yannis Kotzamanis who kindly donated the SBM used in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10695_2016_310_MOESM1_ESM.pdf (75 kb)
ESM 1 (PDF 75 kb)

References

  1. Angrisano T, Pero R, Peluso S, Keller S, Sacchetti S, Bruni CB, Chiariotti L, Lembo F (2010) LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiol 10:172. doi: 10.1186/1471-2180-10-172 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, Ringø E, Krogdahl Å (2007) Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Br J Nutr 97:699–713. doi: 10.1017/S0007114507381397 CrossRefPubMedGoogle Scholar
  3. Basurco B, Lovatelli A, García B (2011) Current status of Sparidae aquaculture. In: Pavlidis MA, Mylonas CC (eds) Sparidae: Biology and Aquaculture of Gilthead Sea Bream and Other Species. Blackwell Publishing LtdGoogle Scholar
  4. Bonaldo A, Roem AJ, Fagioli P, Pecchini A, Cipollini I, Gatta PP (2008) Influence of dietary levels of soybean meal on the performance and gut histology of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Aquac Res 39:970–978. doi: 10.1111/j.1365-2109.2008.01958.x CrossRefGoogle Scholar
  5. Castillo-Briceño P, Sepulcre MP, Chaves-Pozo E, Meseguer J, García-Ayala A, Mulero V (2009) Collagen regulates the activation of professional phagocytes of the teleost fish gilthead seabream. Mol Immunol 46:1409–1415. doi: 10.1016/j.molimm.2008.12.005 CrossRefPubMedGoogle Scholar
  6. Chadzinska M, Baginski P, Kolaczkowska E, Savelkoul HFJ, Verburg-van Kemenade BML (2008) Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation. Immunology 125:601–610. doi: 10.1111/j.1365-2567.2008.02874.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111:2247–2252. doi: 10.1073/pnas.1322269111 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chikwati EM, Gu J, Penn MH, Bakke AM, Krogdahl Å (2013a) Intestinal epithelial cell proliferation and migration in Atlantic salmon Salmo salar L.: effects of temperature and inflammation. Cell Tissue Res 353:123–137. doi: 10.1007/s00441-013-1631-9 CrossRefPubMedGoogle Scholar
  9. Chikwati EM, Sahlmann C, Holm H, Penn MH, Krogdahl Å, Bakke AM (2013b) Alterations in digestive enzyme activities during the development of diet-induced enteritis in Atlantic salmon, Salmo salar L. Aquaculture 402-403:28–37. doi: 10.1016/j.aquaculture.2013.03.023 CrossRefGoogle Scholar
  10. Couto A, Kortner TM, Penn M, Bakke AM, Krogdahl Å, Oliva-Teles A (2015) Saponins and phytosterols in diets for European sea bass (Dicentrarchus labrax) juveniles: effects on growth, intestinal morphology and physiology. Aquacult Nut 21:180–193. doi: 10.1111/anu.12146 CrossRefGoogle Scholar
  11. Dias J, Conceição LEC, Ribeiro AR, Borges P, Valente LMP, Dinis MT (2009) Practical diet with low fish-derived protein is able to sustain growth performance in gilthead seabream (Sparus aurata) during the grow-out phase. Aquaculture 293:255–262. doi: 10.1016/j.aquaculture.2009.04.042 CrossRefGoogle Scholar
  12. Drew MD, Borgeson TL, Thiessen DL (2007) A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim Feed Sci Tech 138:118–136. doi: 10.1016/j.anifeedsci.2007.06.019 CrossRefGoogle Scholar
  13. Duan MR, Smerdon MJ (2014) Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin remodeler RSC (remodels structure of chromatin). J Biol Chem 289:8353–8363. doi: 10.1074/jbc.M113.540732 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Elbal MT, García-Hernández MP, Lozano MT, Agulleiro B (2004) Development of the digestive tract of gilthead sea bream (Sparus aurata L.). Light and electron microscopic studies. Aquaculture 234:215–238. doi: 10.1016/j.aquaculture.2003.11.028 CrossRefGoogle Scholar
  15. Fang L, Liang XF, Zhou Y, Guo XZ, He Y, Yi TL, Liu LW, Yuan XC, Tao YX (2014) Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio. Br J Nut 111:808–818. doi: 10.1017/S0007114513003243 CrossRefGoogle Scholar
  16. Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109. doi: 10.1038/nrg3142 PubMedGoogle Scholar
  17. Fusunyan RD, Quinn JJ, Fujimoto M, MacDermott RP, Sanderson IR (1999) Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells through histone acetylation. Mol Med 5:631–640PubMedPubMedCentralGoogle Scholar
  18. García-Castillo J, Pelegrín P, Mulero V, Meseguer J (2002) Molecular cloning and expression analysis of tumor necrosis factor α from a marine fish reveal its constitutive expression and ubiquitous nature. Immunogenetics 54:200–207CrossRefPubMedGoogle Scholar
  19. Gavery MR, Roberts SB (2013) Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. PeerJ 1:e215. doi: 10.7717/peerj.215 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Geurden I, Mennigen J, Plagnes-Juan E, Veron V, Cerezo T, Mazurais D, Zambonino-Infante J, Gatesoupe J, Skiba-Cassy S, Panserat S (2014) High or low dietary carbohydrate:protein ratios during first feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. J Exp Biol 217:3396–3406. doi: 10.1242/jeb.106062 CrossRefPubMedGoogle Scholar
  21. Geurden I, Borchert P, Balasubramanian MN, Schrama JW, Dupont-Nivet M, Quillet E, Kaushik SJ, Panserat S, Médale F (2013) The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilization in rainbow trout. PLoS One 8:e83162. doi: 10.1371/journal.pone.0083162 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gong Y-Z, Everett ET, Schwartz DA, Norris JS, Wilson FA (1994) Molecular cloning, tissue distribution, and expression of a 14 kDa bile acid-binding protein from rat ileal cytosol. Proc Natl Acad Sci U S A 91:4741–4745CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gu M, Bai N, Zhang Y, Krogdahl Å (2016) Soybean meal induces enteritis in turbot Scophthalmus maximus at high supplementation levels. Aquaculture 464:286–295. doi: 10.1016/j.aquaculture.2016.06.035 CrossRefGoogle Scholar
  24. Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41:770–776. doi: 10.1111/j.1365-2109.2009.02349.x CrossRefGoogle Scholar
  25. Hinnebusch BF, Henderson JW, Siddique A, Malo MS, Zhang W, Abedrapo MA, Hodin RA (2003) Transcriptional activation of the enterocyte differentiation marker intestinal alkaline phosphatase is associated with changes in the acetylation state of histone H3 at a specific site within its promoter region in vitro. J Gastrointest Surg 7:237–245CrossRefPubMedGoogle Scholar
  26. Izquierdo MS, Scolamacchia M, Betancor M, Roo J, Caballero MJ, Terova G (2013) Witten PE (2013) effects of dietary DHA and a-tocopherol on bone development, early mineralisation and oxidative stress in Sparus aurata (Linnaeus, 1758) larvae. Br J Nutr 109:1796–1805. doi: 10.1017/S0007114512003935 CrossRefPubMedGoogle Scholar
  27. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254CrossRefPubMedGoogle Scholar
  28. Johnson MC, Sangrador-Vegas A, Smith TJ, Cairns MT (2004) Molecular cloning and expression analysis of rainbow trout (Oncorhynchus mykiss) matrix metalloproteinase-9. Fish Shellfish Immunol 17:499–503. doi: 10.1016/j.fsi.2004.05.005 CrossRefPubMedGoogle Scholar
  29. Johnsson A, Durand-Dubief M, Xue-Franzén Y, Rönnerblad M, Ekwall K, Wright A (2009) HAT-HDAC interplay modulates global histone H3K14 acetylation in gene-coding regions during stress. EMBO Rep 10:1009–1014. doi: 10.1038/embor.2009.127 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L (2012) H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 13:424. doi: 10.1186/1471-2164-13-424 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Katan-Khaykovich Y, Struhl K (2002) Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and represors. Gene Dev 16:743–752CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kemski MM, Kwasek K, Wojno M, Wick M, Dabrowski K (2015) Soybean-dependent nutritional programming: effect of soybean diet intake during early life stages on adult growth in yellow perch Perca flavescens. Aquaculture America 2015-New Orleans, Louisiana-Meeting Abstract. https://www.was.org/meetings/mobile/MG_Paper.aspx?i=34860
  33. Kendrick SFW, O’Boyle G, Mann J, Zeybel M, Palmer J, Jones DEJ, Day CP (2010) Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 51:1988–1997. doi: 10.1002/hep.23572 CrossRefPubMedGoogle Scholar
  34. Kortner TM, Gu J, Krogdahl Å, Bakke AM (2013) Transcriptional regulation of cholesterol and bile acid metabolism after dietary soyabean meal treatment in Atlantic salmon (Salmo salar L.). Br J Nutr 109:593–604. doi: 10.1017/S0007114512002024 CrossRefPubMedGoogle Scholar
  35. Koven WM, van Anholt R, Lutzky S, Ben AI, Nixon O, Ron B, Tandler A (2003) The effect of dietary arachidonic acid on growth, survival, and cortisol levels in different-age gilthead sea bream larvae (Sparus aurata) exposed to handling or daily salinity change. Aquaculture 228:307–320. doi: 10.1016/S0044-8486(03)00317-X CrossRefGoogle Scholar
  36. Krogdahl Å, Bakke-McKellep AM, Baeverfjord G (2003) Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L). Aquac Nutr 9:361–371. doi: 10.1046/j.1365-2095.2003.00264.x CrossRefGoogle Scholar
  37. Krogdahl Å, Penn MH, Thorsen J, Refstie S, Bakke AM (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res 41:333–344. doi: 10.1111/j.1365-2109.2009.02426.x CrossRefGoogle Scholar
  38. Krogdahl Å, Gajardo K, Kortner TM, Penn M, Gu M, Berge GM, Bakke AM (2015) Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). J Agric Food Chem 63:3887–3902. doi: 10.1021/jf506242t CrossRefPubMedGoogle Scholar
  39. Lallès JP (2010) Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 68:323–332. doi: 10.1111/j.1753-4887.2010.00292.x CrossRefPubMedGoogle Scholar
  40. Lilleeng E, Froystad MK, Ostby GC, Valen EC, Krogdahl Å (2007) Effects of diets containing soybean meal on trypsin mRNA expression and activity in Atlantic salmon (Salmo salar L). Comp Biochem Physiol 147A:25–36CrossRefGoogle Scholar
  41. Lillycrop KA, Burdge GC (2012) Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab 26:667–676. doi: 10.1016/j.beem.2012.03.009 CrossRefPubMedGoogle Scholar
  42. Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80:1771–1792. doi: 10.1016/j.bcp.2010.06.036 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  44. Mata-Sotres JA, Martínez-Rodríguez G, Pérez-Sánchez J, Sánchez-Vázquez FJ, Yúfera M (2015) Daily rhythms of clock gene expression and feeding behavior during the larval development in gilthead seabream, Sparus aurata. Chronobiol Int 32:1061–1074. doi: 10.3109/07420528.2015.1058271 CrossRefPubMedGoogle Scholar
  45. Mata-Sotres JA, Moyano FJ, Martínez-Rodríguez G, Yúfera M (2016) Daily rhythms of digestive enzyme activity and gene expression in gilthead seabream (Sparus aurata) during ontogeny. Comp Biochem Physiol 197A:43–51. doi: 10.1016/j.cbpa.2016.03.010 CrossRefGoogle Scholar
  46. Martínez G, Shaw EM, Carrillo M, Zanuy S (1998) Protein salting-out method applied to genomic DNA isolation from fish whole blood. BioTechniques 24:238–239PubMedGoogle Scholar
  47. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, Jackson SP (2010) Human HDAC1 and HDAC2 function in the DNA-damage response to pro-mote DNA nonhomologous end-joining. Nat Struct Mol Biol 17:1144–1151. doi: 10.1038/nsmb.1899 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Moyano FJ, Diaz M, Alarcón FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130CrossRefPubMedGoogle Scholar
  49. Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024CrossRefPubMedGoogle Scholar
  50. Pedersen ME, Vuong TT, Rønning SB, Kolset SO (2015) Matrix metalloproteinases in fish biology and matrix turnover. Matrix Biol 44-46:86–93. doi: 10.1016/j.matbio.2015.01.009 CrossRefPubMedGoogle Scholar
  51. Perera E, Yúfera M (2016) Soybean meal and soy protein concentrate in early diet elicit different nutritional programming effects on juvenile zebrafish. Zebrafish 13:61–69. doi: 10.1089/zeb.2015.1131 CrossRefPubMedGoogle Scholar
  52. Pérez-Cordón G, Estensoro I, Benedito-Palos L, Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J (2014) Interleukin gene expression is strongly modulated at the local level in a fish-parasite model. Fish Shellfish Immunol 37:201–208. doi: 10.1016/j.fsi.2014.01.022 CrossRefPubMedGoogle Scholar
  53. Polo A, Yúfera M, Pascual E (1992) Feeding and growth of gilthead seabream (Sparus aurata L.) larvae in relation to the size of the rotifer strain used as food. Aquaculture 103:45–54CrossRefGoogle Scholar
  54. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432CrossRefPubMedGoogle Scholar
  55. Reik W, Dean W (2001) DNA methylation and mammalian epigenetics. Electrophoresis 22:2838–2843CrossRefPubMedGoogle Scholar
  56. Robaina L, Izquierdo MS, Moyano FJ, Socorro J, Vergara JM, Montero D, Fernández-Palacios H (1995) Soybean and lupin seed meals as protein-sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture 130:219–233. doi: 10.1016/0044-8486(94)00225-D CrossRefGoogle Scholar
  57. Romano A, Barca A, Storelli C, Verri T (2014) Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+-oligopeptide transporter as a case study. J Physiol 592:881–897. doi: 10.1113/jphysiol.2013.259622 CrossRefPubMedGoogle Scholar
  58. Sahlmann C, Gu J, Kortner TM, Lein I, Krogdahl Å, Bakke AM (2015) Ontogeny of the digestive system of Atlantic salmon (Salmo salar L.) and effects of soybean meal from start-feeding. PLoS One 10:e0124179. doi: 10.1371/journal.pone.0124179 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sanden M, Berntssen MHG, Krogdahl Å, Hemre G-I, Bakke-McKellep A-M (2005) An examination of the intestinal tract of Atlantic salmon, Salmo salar L., parr fed different varieties of soy and maize. J Fish Dis 28:317–330CrossRefPubMedGoogle Scholar
  60. Santigosa E, Sáenz de Rodrigáñez MA, Rodiles A, Barroso FG, Alarcón FJ (2010) Effect of diets containing a purified soybean trypsin inhibitor on growth performance, digestive proteases and intestinal histology in juvenile sea bream (Sparus aurata L.). Aquac Res 41:e187–e198. doi: 10.1111/j.1365-2109.2010.02500.x CrossRefGoogle Scholar
  61. Schӧnbeck U, Mach F, Libby P (1998) Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J Immunol 161:3340–3346Google Scholar
  62. Terova G, Robaina L, Izquierdo M, Cattaneo A, Molinari S, Bernardini G, Saroglia M (2013) PepT1 mRNA expression levels in sea bream (Sparus aurata) fed different plant protein sources. Springerplus 2:17. doi: 10.1186/2193-1801-2-17 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Thummel R, Burket CT, Hyde DR (2006) Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration. ScientificWorldJournal 6(Suppl 1):65–81. doi: 10.1100/tsw.2006.328 CrossRefPubMedGoogle Scholar
  64. Vagner M, Robin JH, Zambonino-Infante JL, Tocher DR, Person-Le Ruyet J (2009) Ontogenic effects of early feeding of sea bass (Dicentrarchus labrax) larvae with a range of dietary n-3 highly unsaturated fatty acid levels on the functioning of polyunsaturated fatty acid desaturation pathways. Br J Nutr 101:1452–1462. doi: 10.1017/S0007114508088053 CrossRefPubMedGoogle Scholar
  65. Venou B, Alexis MN, Fountoulaki E, Haralabous J (2006) Effects of extrusion and inclusion level of soybean meal on diet digestibility, performance and nutrient utilization of gilthead sea bream (Sparus aurata). Aquaculture 261:343–356. doi: 10.1016/j.aquaculture.2006.07.030 CrossRefGoogle Scholar
  66. Venold FF, Penn MH, Thorsen J, Gu J, Kortner TM, Krogdahl Å, Bakke AM (2013) Intestinal fatty acid binding protein (fabp2) in Atlantic salmon (Salmo salar): localization and alteration of expression during development of diet induced enteritis. Comp Biochem Physiol 164A:229–240. doi: 10.1016/j.cbpa.2012.09.009 CrossRefGoogle Scholar
  67. Yúfera M, Fernandez-Díaz C, Pascual E (2005) Food microparticles for larval fish prepared by internal gelation. Aquaculture 248:253–262. doi: 10.1016/j.aquaculture.2005.04.026 CrossRefGoogle Scholar
  68. Zambonino-Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol 130C:477–487Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Departamento de Biología Marina y AcuiculturaInstituto de Ciencias Marinas de Andalucía (ICMAN-CSIC)CádizSpain
  2. 2.Control of Food Intake Group, Department of Fish Physiology and BiotechnologyInstitute of Aquaculture Torre de la Sal (IATS-CSIC)CastellónSpain

Personalised recommendations