Fish Physiology and Biochemistry

, Volume 43, Issue 2, pp 465–475 | Cite as

Potential contributions of heat shock proteins and related genes in sexual differentiation in yellow catfish (Pelteobagrus fulvidraco)

  • Yan He
  • Jie Fang
  • Liyao Xue
  • Junjie Wu
  • Farman Ullah Dawar
  • Jie Mei


Sex determination and differentiation in ectotherms are very complicated affairs and usually affected by both genetic and environmental factors. Because of their temperature-sensitive expression, heat shock proteins (HSPs) are good candidates for temperature-dependent sex determination (TSD). Similar to most thermosensitive fish species, the male to female ratio increases with temperature in yellow catfish (Pelteobagrus fulvidraco). Yellow catfish is also a type of sexual size dimorphic fish, and the male individuals grow much faster than females of the same age. Therefore, research of sex differentiation in yellow catfish is important in aquiculture. In this attempt, a total of seven HSPs and related genes were identified from transcriptomes of yellow catfish by 454 pyrosequencing and Solexa sequencing that we did previously, including five genes with complete open reading frame (ORF). Phylogenetically, all these genes were compared with their counterparts from other vertebrates. All these genes were sex-biased expressed in gonads. Hspa5, Hip, and Cdc37 were expressed more highly in ovary than in testis, whereas Hsp90α, Hspb2, Hspb8, and Hspbp1 were expressed more highly in testis than in ovary. Additionally, the expression of these genes was assessed after 17α-methyltestosterone (MT) and 17α-ethinylestradiol (EE2) treatment, respectively. Our result showed that working as co-chaperones, these HSPs and related genes may regulate sex steroid receptor activities to influence gonad development in yellow catfish. Our work would help in the understanding of the mechanism of sexual differentiation in teleosts.


Heat shock proteins Pelteobagrus fulvidraco Sex differentiation Sex steroid 



Authors thank Allison Malick for her kind reading of the manuscript. This work was funded by the National Natural Science Foundation of China (31301931) and the Fundamental Research Funds for the Central Universities (2013PY068, 2014 BC007). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Experiments were performed in accordance with the guiding principles for biomedical research involving animals of Ethics and Animal Welfare Committee of College Fisheries, Huazhong Agricultural University and the committee approved this study. Euthanasia (Barbitone sodium immersion) was taken to avoid suffering when killing the fish for sampling.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10695_2016_303_MOESM1_ESM.docx (19 kb)
Supplemental Table 1 (DOCX 19 kb)


  1. Baroiller JF, Clota F (1998) Interactions between temperature effects and genotype on Oreochromis niloticus sex determination. J Exp Zool 281:507Google Scholar
  2. Baroiller JF, Guiguen Y, Fostier A (1999) Endocrine and environmental aspects of sex differentiation in fish. Cell Mol Life Sci 55:910–931CrossRefGoogle Scholar
  3. Boulangé-Lecomte C, Forget-Leray J, Xuereb B (2014) Sexual dimorphism in Grp78 and Hsp90A heat shock protein expression in the estuarine copepod Eurytemora affinis. Cell Stress Chaperones 19(4):591–597CrossRefPubMedGoogle Scholar
  4. Bukau B, Deuerling E, Pfund C, Craig EA (2000) Getting newly synthesized proteins into shape. Cell 101(2):119–122CrossRefPubMedGoogle Scholar
  5. Chen H, Hewison M, Adams JS (2008) Control of estradiol-directed gene transactivation by an intracellular estrogen-binding protein and an estrogen response element-binding protein. Mol Endocrinol 22(3):559–569CrossRefPubMedGoogle Scholar
  6. Chen H, Hewison M, Hu B, Sharma M, Sun ZJ, Adams JS (2004) An Hsp27-related, dominant-negative-acting intracellular estradiol-binding protein. J Biol Chem 279:29944–29951CrossRefPubMedGoogle Scholar
  7. Conover DO, Kynard BE (1981) Environmental sex determination: interaction of temperature and genotype in a fish. Science 213:577–579CrossRefPubMedGoogle Scholar
  8. Dan C, Mei J, Wang D, Gui JF (2013) Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish. Int J Biol Sci 9(10):1043–1049CrossRefPubMedPubMedCentralGoogle Scholar
  9. Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710CrossRefPubMedGoogle Scholar
  11. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364CrossRefGoogle Scholar
  12. Didier P (2006) Chaperoning steroid hormone action. Trends Endocrin Met 17(6):229–235CrossRefGoogle Scholar
  13. Dimitris GS, Ioannis L, Constantinos CM, Maroudio K (2012) Temperature during early life determines sex in zebrafish, Danio rerio (Hamilton, 1822). J Biol Res-Thessalon 17:68–73Google Scholar
  14. Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, Goulding EH, Eddy EM (1996) Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci U S A 93(8):3264–3268CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dix DJ, Allen JW, Collins BW, Poorman-Allen P, Mori C, Blizard DR, Brown PR, Goulding EH, Strong BD, Eddy EM (1997) HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 124(22):4595–4603PubMedGoogle Scholar
  16. Eddy EM (1999) Role of heat shock protein HSP70-2 in spermatogenesis. Rev Reprod 4:23–30CrossRefPubMedGoogle Scholar
  17. Fang J, Wang H, Fang L, Li B, Zhu W, Zhou Y, Mei J, Yuan X, Liu L, He Y (2014) Effects of heat shock treatment on glucose metabolism in grass carp (Ctenopharyngodon idellus) juveniles. Aquaculture 422-423:211–217CrossRefGoogle Scholar
  18. Fliss AE, Fang Y, Boschelli F, Caplan AJ (1997) Differential in vivo regulation of steroid hormone receptor activation by Cdc37p. Mol Biol Cell 8(12):2501–2509CrossRefPubMedPubMedCentralGoogle Scholar
  19. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70. Cell Cycle 5:2592–2601CrossRefPubMedGoogle Scholar
  20. Gui JF, Zhu ZY (2012) Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chin Sci Bull 57(15):1751–1760CrossRefGoogle Scholar
  21. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strussmann CA (2012) A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci U S A 109(8):2955–2959CrossRefPubMedPubMedCentralGoogle Scholar
  22. He Y, Luo M, Yi M, Sheng Y, Cheng Y, Zhou R, Cheng H (2013) Identification of a testis-enriched heat shock protein and fourteen members of Hsp70 family in the swamp eel. PLoS One 8(6):e65269CrossRefPubMedPubMedCentralGoogle Scholar
  23. He Y, Shang X, Sun J, Zhang L, Zhao W, Tian Y, Cheng H, Zhou R (2010) Gonadal apoptosis during sex reversal of the rice field eel: implications for an evolutionarily conserved role of the molecular chaperone heat shock protein 10. J Exp Zool B Mol Dev Evol 314(4):257–266PubMedGoogle Scholar
  24. Held T, Barakat AZ, Mohamed BA, Paprotta I, Meinhardt A, Engel W, Adham IM (2011) Heat-shock protein HSPA4 is required for progression of spermatogenesis. Reproduction 142(1):133–144CrossRefPubMedGoogle Scholar
  25. Held T, Paprotta I, Khulan J, Hemmerlein B, Binder L, Wolf S, Schubert S, Meinhardt A, Engel W, Adham IM (2006) Hspa4l-deficient mice display increased incidence of male infertility and hydronephrosis development. Mol Cell Biol 26(21):8099–8108CrossRefPubMedPubMedCentralGoogle Scholar
  26. Holleley CE, O’Meally D, Sarre SD, Marshall Graves JA, Ezaz T, Matsubara K, Azad B, Zhang X, Georges A (2015) Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523(7558):79–82CrossRefPubMedGoogle Scholar
  27. Huo R, Zhu YF, Ma X, Lin M, Zhou ZM, Sha JH (2004) Differential expression of glucose-regulated protein 78 during spermatogenesis. Cell Tissue Res 316(3):359–367CrossRefPubMedGoogle Scholar
  28. Ito Y, Ando A, Ando H, Ando J, Saijoh Y, Inoko H, Fujimoto H (1998) Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man. J Biochem 124:347–353CrossRefPubMedGoogle Scholar
  29. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K (2012) A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8(7):e1002798CrossRefPubMedPubMedCentralGoogle Scholar
  30. Knapp RT, Wong MJ, Kollmannsberger LK, Gassen NC, Kretzschmar A, Zschocke J, Hafner K, Young JC, Rein T (2014) Hsp70 cochaperones HspBP1 and BAG-1 M differentially regulate steroid hormone receptor function. PLoS One 9(1):e85415CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kobayashi H, Iwamatsu T, Shibata Y, Ishihara M, Kobayashi Y (2011) Effects of co-administration of estrogen and androgen on induction of sex reversal in the medaka Oryzias latipes. Zool Sci 28(5):355–359CrossRefPubMedGoogle Scholar
  32. Kohno S, Katsu Y, Urushitani H, Ohta Y, Iguchi T, Guillette LJ Jr (2010) Potential contributions of heat shock proteins to temperature-dependent sex determination in the American alligator. Sex Dev 4(1–2):73–87CrossRefPubMedGoogle Scholar
  33. Lachance C, Fortier M, Thimon V, Sullivan R, Bailey JL, Leclerc P (2010) Localization of Hsp60 and Grp78 in the human testis, epididymis and mature spermatozoa. Int J Androl 33(1):33–44CrossRefPubMedGoogle Scholar
  34. Lang JW, Andrews HV (1994) Temperature-dependent sex determination in crocodilians. J Exp Zool 270:28–44CrossRefGoogle Scholar
  35. Lavery R, Chassot AA, Pauper E, Gregoire EP, Klopfenstein M, de Rooij DG, Mark M, Schedl A, Ghyselinck NB, Chaboissier MC (2012) Testicular differentiation occurs in absence of R-spondin1 and Sox9 in mouse sex reversals. PLoS Genet 8(12):e1003170CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lobo V, Rao P, Gajbhiye R, Kulkarni V, Parte P (2015) Glucose regulated protein 78 phosphorylation in sperm undergoes dynamic changes during maturation. PLoS One 10(11):e0141858CrossRefPubMedPubMedCentralGoogle Scholar
  37. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417(6888):559–563CrossRefPubMedGoogle Scholar
  38. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mei J, Gui JF (2015) Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci China Life Sci 58:124–136CrossRefPubMedGoogle Scholar
  40. Milnes MR, Roberts RN, Guillette LJ Jr (2002) Effects of incubation temperature and estrogen exposure on aromatase activity in the brain and gonads of embryonic alligators. Environ Health Perspect 110:393–396CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mork L, Czerwinski M, Capel B (2014) Predetermination of sexual fate in a turtle with temperature-dependent sex determination. Dev Biol 386(1):264–271CrossRefPubMedGoogle Scholar
  42. Morrish BC, Sinclair AH (2002) Vertebrate sex determination: many means to an end. Reproduction 124(4):447–457CrossRefPubMedGoogle Scholar
  43. Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M (2012) Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191(1):163–170CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci U S A 99(18):11778–11783CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, Accili D, Parada LF (2003) Testis determination requires insulin receptor family function in mice. Nature 426(6964):291–295CrossRefPubMedGoogle Scholar
  46. Nelson GM, Prapapanich V, Carrigan PE, Roberts PJ, Riggs DL, Smith DF (2004) The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. Mol Endocrinol 18(7):1620–1630CrossRefPubMedGoogle Scholar
  47. Pandian TJ, Sheela SG (1995) Hormonal induction of sex reversal in fish. Aquaculture 138(1–4):1–22CrossRefGoogle Scholar
  48. Papaconstantinou AD, Goering PL, Umbreit TH, Brown KM (2003) Regulation of uterine hsp90alpha, hsp72 and HSF-1 transcription in B6C3F1 mice by beta-estradiol and bisphenol A: involvement of the estrogen receptor and protein kinase C. Toxicol Lett 144(2):257–270CrossRefPubMedGoogle Scholar
  49. Patiño R, Davis KB, Schoore JE, Uguz C, Strüssmann CA, Parker NC, Simco BA, Goudie CA (1996) Sex differentiation of channel catfish gonads: normal development and effects of temperature. J Exp Zool 276:209–218CrossRefGoogle Scholar
  50. Pelham HR (1984) Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J 3(13):3095–3100PubMedPubMedCentralGoogle Scholar
  51. Piferrer F, Ribas L, Diaz N (2012) Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Mar Biotechnol (NY) 14(5):591–604CrossRefGoogle Scholar
  52. Pitetti JL, Calvel P, Romero Y, Conne B, Truong V, Papaioannou MD, Schaad O, Docquier M, Herrera PL, Wilhelm D, Nef S (2013) Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet 9(1):e1003160CrossRefPubMedPubMedCentralGoogle Scholar
  53. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808CrossRefPubMedGoogle Scholar
  54. Pratt WB (1998) The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 217(4):420–434CrossRefPubMedGoogle Scholar
  55. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360PubMedGoogle Scholar
  56. Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JA (2007) Temperature sex reversal implies sex gene dosage in a reptile. Science 316(5823):411CrossRefPubMedGoogle Scholar
  57. Radder RS, Quinn AE, Georges A, Sarre SD, Shine R (2008) Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard. Biol Lett 4(2):176–178CrossRefPubMedGoogle Scholar
  58. Rao J, Lee P, Benzeno S, Cardozo C, Albertus J, Robins DM, Caplan AJ (2001) Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor. J Biol Chem 276(8):5814–5820CrossRefPubMedGoogle Scholar
  59. Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14(20):2587–2595CrossRefPubMedPubMedCentralGoogle Scholar
  60. Raynes DA, Guerriero V Jr (1998) Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J Biol Chem 273:32883–32888CrossRefPubMedGoogle Scholar
  61. Razandi M, Pedram A, Levin ER (2010) Heat shock protein 27 is required for sex steroid receptor trafficking to and functioning at the plasma membrane. Mol Cell Biol 30(13):3249–3261CrossRefPubMedPubMedCentralGoogle Scholar
  62. Romani WA, Russ DW (2013) Acute effects of sex-specific sex hormones on heat shock proteins in fast muscle of male and female rats. Eur J Appl Physiol 113(10):2503–2510CrossRefPubMedGoogle Scholar
  63. Shine R, Elphick MJ, Donnellan S (2002) Co-occurrence of multiple, supposedly incompatible modes of sex determination in a lizard population. Ecol Lett 5:486–489CrossRefGoogle Scholar
  64. Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17(3):367–379PubMedGoogle Scholar
  65. Singh AK (2013) Introduction of modern endocrine techniques for the production of monosex population of fishes. Gen Comp Endocrinol 181:146–155CrossRefPubMedGoogle Scholar
  66. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, Yoshitome A, Yamawaki K, Amagai M, Inoue A, Oshima T, Kakitani M (2008) R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17(9):1278–1291CrossRefPubMedGoogle Scholar
  68. Tzankov S, Wong MJ, Shi K, Nassif C, Young JC (2008) Functional divergence between co-chaperones of Hsc70. J Biol Chem 283:27100–27109CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vos MJ, Mijnhout GS, Rondeel JM, Baron W, Groeneveld PH (2014) Sex hormone binding globulin deficiency due to a homozygous missense mutation. J Clin Endocrinol Metab 99(9):E1798–E1802CrossRefPubMedGoogle Scholar
  70. Wang D, Mao HL, Chen HX, Liu HQ, Gui JF (2009) Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Anim Genet 40(6):978–981CrossRefPubMedGoogle Scholar
  71. Wei Q, Yokota C, Semenov MV, Doble B, Woodgett J, He X (2007) R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling. J Biol Chem 282(21):15903–15911CrossRefPubMedGoogle Scholar
  72. Wang Y, Zhou L, Li Z, Li W, Gui J (2013) Apolipoprotein C1 regulates epiboly during gastrulation in zebrafish. Sci China Life Sci 56(11):975–984CrossRefPubMedGoogle Scholar
  73. Widlak W, Vydra N, Malusecka E, Dudaladava V, Winiarski B, Scieglinska D, Widlak P (2007) Heat shock transcription factor 1 down-regulates spermatocyte-specific 70 kDa heat shock protein expression prior to the induction of apoptosis in mouse testes. Genes Cells 12(4):487–499CrossRefPubMedGoogle Scholar
  74. Wilhelm D (2007) R-spondin1—discovery of the long-missing, mammalian female-determining gene? BioEssays 29(4):314–318CrossRefPubMedGoogle Scholar
  75. Xiong S, Jing J, Wu J, Ma W, Dawar FU, Mei J, Gui JF (2015) Characterization and sexual dimorphic expression of Cytochrome P450 genes in the hypothalamic-pituitary-gonad axis of yellow catfish. Gen Comp Endocrinol 216:90–97CrossRefPubMedGoogle Scholar
  76. Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y (2012) An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 22(15):1423–1428CrossRefPubMedGoogle Scholar
  77. You X, Deng M, Liu Q, Qin Y, He X (2016) Gonadal differentiation and effects of temperature on sex determination in yellow catfish, Pseudobagrus fulvidraco Richardson. J Huazhong Agri Univ 35(1):106–113Google Scholar
  78. Zarkower D (2013) DMRT Genes in Vertebrate Gametogenesis. Curr Top Dev Biol 102:327–356CrossRefPubMedGoogle Scholar
  79. Zhang W, Hirshberg M, McLaughlin SH, Lazar GA, Grossmann JG, Nielsen PR, Sobott F, Robinson CV, Jackson SE, Laue ED (2004) Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J Mol Biol 340(4):891–907CrossRefPubMedGoogle Scholar
  80. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PH, Paps J et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina

Personalised recommendations