Skip to main content
Log in

Proteolytic activity in some freshwater animals and associated microflora in a wide pH range

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Proteolytic activity in some freshwater animals (crustacean plankton, sandhopper Amphipoda sp., larvae of chironomids Chironomus sp., oligochaetes Oligohaeta sp., dreissena Dreissena polymorpha, roach Rutilus rutilus heckelii, rudd Scardinius erythrophthalmus, ruff Acerina cernua, and monkey goby Neogobius fluviatilis) prevailing within the food of fishes of various ecological groups as well as in their associated microflora in a wide pH range was investigated. It has been shown that the optimum pH of proteases in the animals’ whole organism varies: 6.0 for sandhopper; 8.0 for chironomid larvae, oligochaetes, monkey goby, and ruff; 8.0–9.0 for zooplankton; and 10.0 for roach and rudd. The optimum pH of associated microflora proteases is 6.0 for monkey goby; 7.0 for sandhopper and roach and ruff ; 8.0–9.0 for oligochaetes; 9.0 for zooplankton; and 10.0 for chironomid larvae and rudd. The compensatory role of food items and enteric microbiota proteases in digestive processes in fish of different ecological groups at low pH is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aoki H, Ahsan MN, Watabe S (2003) Molecular cloning and characterization of cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis. Comp Biochem Physiol 134B:681–694

    Article  CAS  Google Scholar 

  • Aranishi F, Hara K, Osatomi K, Ishihara T (1997a) Purification and characterization of cathepsin B from hepatopancreas of carp Cyprinus carpio. Comp Biochem Physiol 117B(4):579–587

    Article  CAS  Google Scholar 

  • Aranishi F, Hara K, Osatomi K, Ishihara T (1997b) Cathepsin B, H and L in peritoneal macrophages and hepatopancreas of carp Cyprinus carpio. Comp Biochem Physiol 117B(4):601–605

    Google Scholar 

  • Ashie INA, Simpson BK (1997) Proteolysis in food myosystems—a review. J Food Biochem 21:91–123

    Article  CAS  Google Scholar 

  • Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringo E (2012) Culturable autochthonous bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquac Res 326–329:1–8

    Article  Google Scholar 

  • Austin B (2006) The bacterial microflora of fish, revised. Sci World J 6:931–945

    Article  CAS  Google Scholar 

  • Belchior SGE, Vacca G (2006) Fish protein hydrolysis by a psychrotrophic marine bacterium isolated from the gut of hake (Merluccius hubbsi). Can J Microbiol 52:1266–1271

    Article  CAS  PubMed  Google Scholar 

  • Butler AM, Aiton AL, Warner AH (2001) Characterization of a novel heterodimeric cathepsin L-like protease and cDNA encoding the catalytic subunit of the protease in embryos of Artemia franciscana. Biochem Cell Biol 79:43–56

    Article  CAS  PubMed  Google Scholar 

  • Cahill MM (1990) Bacterial flora of fishes: a review. Microb Ecol 19:21–41

    Article  CAS  PubMed  Google Scholar 

  • Capasso C, Lees WE, Capasso A, Scudiero R, Carginale V, Kille P, Kay J, Parisi E (1999) Cathepsin D from the liver of the Antarctic icefish Chionodraco hamatus exhibits unusual activity and stability at high temperatures. Biochim Biophys Acta 1431:64–73

    Article  CAS  PubMed  Google Scholar 

  • Clements KD (1997) Fermentation and gastrointestinal microorganisms in fishes, Ch 6. In: Mackie RI, White BA (eds) Gastrointestinal ecosystems and fermentations. Chapman and Hall, New York, pp 156–198

    Google Scholar 

  • Dabrowski K (1979) The role of proteolytic enzymes in fish digestion. In: Cultivation of fish fry and its live food, vol 5. Eur Maricult Soc Bradine, Belgium. Special Publ., pp 107–126

  • Dabrowski K, Glogowski J (1977a) Studies on the proteolytic enzymes of invertebrates constituting fish food. Hydrobiologia (Hagua) 52:171–174

    Article  CAS  Google Scholar 

  • Dabrowski K, Glogowski J (1977b) The role of exogenic proteolytic enzymes in digestion processes in fish. Hydrobiologia (Hagua) 54:129–134

    Article  CAS  Google Scholar 

  • Das KM, Tripathi SD (1991) Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 92:21–32

    Article  CAS  Google Scholar 

  • Deguara S, Jauncey K, Agius C (2003) Enzyme activities and pH variations in the digestive tract of gilthead sea bream. J Fish Biol 62:1033–1043

    Article  CAS  Google Scholar 

  • Dendinger JE, O’Connor KL (1990) Purification and characterization of a trypsin-like enzyme from the midgut gland of the Atlantic blue crab Callinectes sapidus. Comp Biochem Physiol. 95B:525–530

    CAS  Google Scholar 

  • Diaz-Tenorio LM, Garcia-Carreňo FL, Navarrete Ángeles, del Toro M (2006) Characterization and comparison of digestive proteinases of the Cortez swimming crab, Callinectes bellicosus, and the arched swimming crab Callinectes arcuatus. Invertebr Biol 125(2):125–135

    Article  Google Scholar 

  • Doke SN, Ninjoor V, Nadkarni GB (1980) Characterization of cathepsin D from the skeletal muscle of fresh water fish, Tilapia mossambica. Agric Biol Chem 44:1521–1528

    CAS  Google Scholar 

  • Erickson MC, Gordon DT, Anglemier AF (1983) Proteolytic activity in the sarcoplasmic fluids of parasitized Pacific whiting (Merluccius productus) and unparasitized True cod (Gadus macrocephalus). J Food Sci 48:315–1319

    Article  Google Scholar 

  • Esakkiraj P, Immanuel G, Sowmya SV, Iyapparaj P, Palavesam A (2009) Evaluation of protease-producing ability of fish gut isolate Bacillus cereus. Food Bioprocess Technol 2:383–390

    Article  Google Scholar 

  • Fernández Gimenez AV, García-Carreňo FL, Navarrete del Toro MA, Fenucci JL (2001) Digestive proteinases of red shrimp Pleoticus muelleri (Decapoda, Penaeoidea): partial characterization and relationship with molting. Comp Biochem Physiol 130B:331–338

    Article  Google Scholar 

  • Ganguly S, Prasad A (2012) Microflora in fish digestive tract plays significant role in digestion and metabolism. Rev Fish Biol Fish 22:11–16

    Article  Google Scholar 

  • García-Carreňo FL, Albuquerque-Cavalcanti C, Navarrete del Toro MA, Zaniboni-Filho E (2002) Digestive proteinases of Brycon orbignyanus (Characidae, Teleostei): characteristics and effects of protein quality. Comp Biochem Physiol 132B:343–352

    Article  Google Scholar 

  • Ghosh K, Sen SK, Ray AK (2002) Characterization of bacilli isolated from gut of rohu, Labelio rohita, finderlings and its significance in digestion. J Appl Aquac 12:33–42

    Article  Google Scholar 

  • Gildberg A (1988) Aspartic proteinases in fishes and aquatic invertebrates. Comp Biochem Physiol 91B:425–435

    CAS  Google Scholar 

  • Glass HJ, MacDonald NL, Moran RM, Stark JR (1989) Digestion of protein in different marine species. Comp Biochem Physiol 94B:607–611

    CAS  Google Scholar 

  • Hau PV, Benjakul S (2006) Purification and characterization of trypsin from pyloric caeca of bigeye snapper (Pricanthus macracanthus). J Food Biochem 30:478–495

    Article  Google Scholar 

  • Hidalgo MC, Urea E, Sanz A (1999) Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170:267–283

    Article  CAS  Google Scholar 

  • Hiraiwa M (1999) Cathepsin A protective protein: an unusual lysosomal multifunctional protein. Cell Mol Life Sci 56:894–907

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T, Ishizaki K, Sakamoto T, Kumeta H, Yumoto I, Matsuyama H, Ohgiya S (1997) Isolation of a Pseudomonas species from fish intestine that produces a protease active at low temperature. Lett Appl Microbiol 25:70–72

    Article  CAS  PubMed  Google Scholar 

  • Jančarik A (1964) Die Verdauung der Hauptnährstoffe beim Karpfen. Z Fisch Hilfswiss 12:601–684

    Google Scholar 

  • Kishimura H, Tokuda Y, Klomklao S, Benjakul S, Ando S (2006) Enzymatic characteristics of trypsin from pyloric ceca of spotted mackerel (Scomber australasicus). J Food Biochem 30:466–477

    Article  CAS  Google Scholar 

  • Kishimura H, Klomklao S, Benjakul S, Chun B-S (2008) Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chem 106:194–199

    Article  CAS  Google Scholar 

  • Kolkovsky S, Tandler A, Kissil GW, Gertler A (1993) The effect of dietary exogenous digestive enzymes on ingestion, assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae. Fish Physiol Biochem 12:203–209

    Article  Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Publications Kottelat, Cornol, Switzerland 646 pp

    Google Scholar 

  • Kumar S, Garcia-Carreno FL, Chakrabarti R, Toro MAN, Co´rdova-Murueta JH (2007) Digestive proteases of three carps Catla catla, Labeo rohita and Hypophthalmichthys molitrix: partial characterization and protein hydrolysis efficiency. Aquac Nutr 13:381–388

    Article  CAS  Google Scholar 

  • Kurokawa T, Shiraishi M, Suzuki T (1998) Qualification of exogenous protease derived from zooplankton in the intestine of Japanese sardine Sardinops melanoticus larvae. Aquaculture 161:491–499

    Article  CAS  Google Scholar 

  • Kuz’mina VV (2005) Physiological and biochemical principles of exotrothy processes in fish. Nauka Publisher, Moscow (in Russian)

    Google Scholar 

  • Kuz’mina VV (2008) Classical and modern conceptions of fish digestion, Ch. 4. In: Cyrino JEP, Bureau D, Kapoor BG (eds) Feeding and digestive functions in fishes. Science Publishers, Enfield, NH, pp 85–154

    Chapter  Google Scholar 

  • Kuz’mina VV, Golovanova IL (2004) Contribution of prey proteinases and carbohydrases in fish digestion. Aquaculture 234:347–360

    Article  Google Scholar 

  • Kuz’mina VV, Skvortsova EG (2003) Contribution of prey proteolytic enzymes in digestive processes in carnivorous fish. J Ichthyol 43(2):209–214

    Google Scholar 

  • Kuz’mina VV, Zolotareva GV, Sheptitskiy VA (2014) Effect of pH on the activity of proteinases in intestinal mucosa, chyme, and microbiota of fish from the Cuciurgan Reservoir. J Ichthyol 54(8):591–597

    Article  Google Scholar 

  • Kuz’mina VV, Zolotareva GV, Sheptitskiy VA (2016) Effect of pH on the proteinase activities in the intestine mucosa, chyme, and enteral microbiota in the piscivorous fish, differing in their ecological traits. J Ichthyol 56(1):147–153

    Article  Google Scholar 

  • Kuz’mina VV, Ushakova NV (2013) The influence of temperature and pH on the effects of zinc and copper on proteolytic activities of intestinal mucosa in planktivorous and benthophagous fishes and their potential preys. Toxicol Environ Chem 95(1):150–162

    Article  Google Scholar 

  • Kuz’mina VV, Skvortsova EG, Zolotareva GV, Sheptitskiy VA (2011) Influence of pH upon the activity of glycosidases and proteinases of intestinal mucosa, chyme and microbiota in fish. Fish Physiol Biochem 37(3):345–357

    Article  PubMed  Google Scholar 

  • Lauff M, Hofer R (1984) Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture 37(4):335–346

    Article  CAS  Google Scholar 

  • Le Boulay C, Van Wormhoudt A, Sellos D (1996) Cloning and expression of cathepsin L-like proteinases in the hepatopancreas of the shrimp Penaeus vannamei during the intermolt cycle. J Comp Physiol 166B(5):310–318

    Article  Google Scholar 

  • Le Chevalier P, Sellos D, Van Wormhoudt A (1995) Purification and partial characterization of chymotrypsin-like proteases from the digestive gland of the scallop Pecten maximus. Comp Biochem Physiol 110B:777–784

    Article  Google Scholar 

  • Li J, Ni J, Li J, Wang C, Li X, Wu S, Zhang T, Yu Y, Yan Q (2014) Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. J Appl Microbiol 117:1750–1760

    Article  CAS  PubMed  Google Scholar 

  • Lubianskienė V, Jastiuginienė R (1996) Antibiotic and fermentative activity of bacteria found in water and digestive tract of fish from lake Druksiai at Ignalina nuclear power plant. Ekologija (Vilnius) 2:3–7

    Google Scholar 

  • Marquez L, Robles R, Morales GA, Moyano FJ (2012) Gut pH as a limiting factor for digestive proteolysis in cultured juveniles of gilthead sea bream (Sparus aurata). Fish Physiol Biochem 38:859–869

    Article  CAS  PubMed  Google Scholar 

  • Munilla-Moran R, Stark JR, Babour A (1990) The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus L.). Aquaculture 88:337–350

    Article  CAS  Google Scholar 

  • Natalia Y, Hashim R, Ali A, Chong A (2004) Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture 233:305–320

    Article  CAS  Google Scholar 

  • Navarrete del Toro MA, García-Carreño FL, Díaz LM, Celis-Guerrero L, Saborowski R (2006) Aspartic proteinases in the digestive tract of marine decapod crustaceans. J Exp Zool 305A:645–654

    Article  Google Scholar 

  • Oh E-S, Kim D-S, Kim JH, Kim H-R (2000) Enzymatic properties of a protease from the hepatopancreas of shrimp, Penaeus oriantalis. J Food Biochem 24:251–264

    Article  CAS  Google Scholar 

  • Oozeki Y, Bailey KM (1995) Ontogenetic development of digestive enzyme activities in larval walleye pollock, Theragra chalcogramma. Mar Biol 122(2):177–186

    CAS  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004) MEROPS: the peptidase database. Nucleic Acids Res 32(suppl 1):D160–D164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray AK, Ghosh K, Ringø E (2012a) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18(5):465–492

    Article  CAS  Google Scholar 

  • Ray AK, Mondal S, Roy T (2012b) Optimization of culture conditions for production of protease by two bacterial strains, Bacillus licheniformis BF2 and Bacillus subtilis BH4 isolated from the digestive tract of Bata, Labeo bata (Hamilton). Proc Zool Soc 65(1):33–39

    Article  Google Scholar 

  • Reid RGB, Rauchert K (1976) Catheptic endopeptidases and protein digestion in the horse clam Tresus capax (Gould). Comp Biochem Physiol 54B:467–472

    Google Scholar 

  • Richter-Otto W, Fehrmann M (1956) Zur methodik von darmflora untersuchungen. Ernährungsforsch 1:584–586

    Google Scholar 

  • Ringo E, Birkbeck TH (1999) Intestinal microflora of fish and fry: a review. Aquac Res 30(2):73–93

    Article  Google Scholar 

  • Teschke M, Saborowski R (2005) Cysteine proteinases substitute for serine proteinases in the midgut glands of Crangon crangon and Crangon allmani (Decapoda: Caridea). J Exp Mar Biol Ecol 316(2):213–229

    Article  CAS  Google Scholar 

  • Ugolev AM (1985) Evolution of digestion and principles of evolution of functions. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Ugolev AM, Kuzmina VV (1993) Digestive processes and adaptations in fish. Gidrometeoizdat, Sanct-Petersburg (in Russian)

    Google Scholar 

  • Vega-Villasante F, Nolasco H, Civera R (1995) The digestive enzymes of the Pacific brown shrimp Penaeus californiensis—II. Properties of protease activity in whole digestive tract. Comp Biochem Physiol 112B:123–129

    Article  CAS  Google Scholar 

  • Visessanguan W, Menino AR, Kim SM, An H (2001) Cathepsin L: a predominant heat activated proteinase in arrowtooth flounder muscle. J Agric Food Chem 49(5):2633–2640

    Article  CAS  PubMed  Google Scholar 

  • Visessanguan W, Benjakul S, An H (2003) Purification and characterization of cathepsin L in arrowtooth flounder (Atheresthes stomias) muscle. Compar Physiol Biochem 134B(3):474–487

    Google Scholar 

  • Wang B, Wang C, Mims SD, Xiong YL (2000) Characterization of the proteases involved in hydrolyzing paddlefish (Polyodon spathula) myosin. J Food Biochem 24:503–515

    Article  CAS  Google Scholar 

  • Warner AH, Pullumbi E, Amons R, Liu L (2004) Characterization of a cathepsin L-associated protein in Artemia and its relationship to the FAS-I family of cell adhesion proteins. Eur J Biochem 271:4014–4025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. K. Iliadi, the Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, for his exceptional linguistic help. This study was partly supported by the Russian Foundation for Basic Research, project 13-04-00248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Zolotareva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’mina, V.V., Zolotareva, G.V. & Sheptitskiy, V.A. Proteolytic activity in some freshwater animals and associated microflora in a wide pH range. Fish Physiol Biochem 43, 373–383 (2017). https://doi.org/10.1007/s10695-016-0293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0293-4

Keywords

Navigation