Skip to main content
Log in

Molecular characterization of southern bluefin tuna myoglobin (Thunnus maccoyii)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The primary structure of southern bluefin tuna Thunnus maccoyii Mb has been elucidated by molecular cloning techniques. The cDNA of this tuna encoding Mb contained 776 nucleotides, with an open reading frame of 444 nucleotides encoding 147 amino acids. The nucleotide sequence of the coding region was identical to those of other bluefin tunas (T. thynnus and T. orientalis), thus giving the same amino acid sequences. Based on the deduced amino acid sequence, bioinformatic analysis was performed including phylogenic tree, hydropathy plot and homology modeling. In order to investigate the autoxidation profiles, the isolation of Mb was performed from the dark muscle. The water soluble fraction was subjected to ammonium sulfate fractionation (60–90 % saturation) followed by preparative gel electrophoresis. Autoxidation profiles of Mb were delineated at pH 5.6, 6.5 and 7.4 at temperature 37 °C. The autoxidation rate of tuna Mb was slightly higher than that of horse Mb at all pH examined. These results revealed that tuna myoglobin was unstable than that of horse Mb mainly at acidic pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alderton AL, Faustman C, Liebler DC, Hill DW (2003) Induction of myoglobin redox instability by adduction with 4-hydroxynonenal. Biochemistry 42:4398–4405

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birnbaum GI, Evans SV, Przybylska M, Rose DR (1994) 1.70 Å resolution structure of myoglobin from yellowfin tuna. An example of a myoglobin lacking the D helix. Acta Cryst D 50:283–289

    Article  CAS  Google Scholar 

  • Brill R (1994) A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movements models and stock assessments. Fish Oceanogr 3:204–216

    Article  Google Scholar 

  • Brown WD, Dolev A (1963) Autoxidation of beef and tuna oxymyoglobin. J Food Sci 28:207–210

    Article  CAS  Google Scholar 

  • Brown WD, Mebine LB (1969) Autoxidation of oxymyoglobins. J Biol Chem 244:6696–6701

    CAS  PubMed  Google Scholar 

  • Chen WL, Chow CJ (2001) Studies on the physicochemical properties of milkfish myoglobin. J Food Biochem 25:157–174

    Article  CAS  Google Scholar 

  • Chow CJ (1991) Relationship between the stability and autooxidation rate of myoglobin. J Agric Food Chem 39:22–26

    Article  CAS  Google Scholar 

  • Chow CJ, Ochiai Y, Hashimoto K (1985) Effect of freezing and thawing on the autoxidation of bluefin tuna myoglobin. Bull Jpn Soc Sci Fish 51(12):2073–2078

    Article  CAS  Google Scholar 

  • Chow CJ, Yang JI, Lee PF, Ochiai Y (2009) Effect of acid and alkaline pretreatment on the discoloration rates of dark muscle and myoglobin extract of skinned tilapia fillet during iced storage. Fish Sci 75:1481–1488

    Article  CAS  Google Scholar 

  • Cossins AR, Berenbrink M (2008) Myoglobin’s new clothes. Nature 454:416–417

    Article  CAS  PubMed  Google Scholar 

  • Faustman C, Cassens RG (1990) The biochemical basis for discoloration in fresh meat: a review. J Muscular Foods 1:217–243

    Article  Google Scholar 

  • Faustman C, Liebler DC, McClure TD, Sun Q (1999) α, β-Unsaturated aldehydes accelerate oxymyoglobin oxidation. J Agric Food Chem 47:3140–3144

    Article  CAS  PubMed  Google Scholar 

  • Faustman C, Sun Q, Mancini R, Suman SP (2010) Myoglobin and lipid oxidation interactions: mechanistic bases and control. Meat Sci 86:86–94

    Article  CAS  PubMed  Google Scholar 

  • Flögel U, Fago A, Rassaf T (2010) Keeping the heart in balance: the functional interactions of myoglobin with nitrogen oxides. J Exp Biol 213:2726–2733

    Article  PubMed  Google Scholar 

  • Gutzke D, Trout GR (2002) Temperature and pH dependence of the autoxidation rate of bovine, ovine, porcine, and corvine oxymyoglobin isolated from three different muscles-longissimus dorsi, gluteus medius, and biceps femoris. J Agric Food Chem 50:2673–2678

    Article  CAS  PubMed  Google Scholar 

  • Hasan MM, Watabe S, Ochiai Y (2012) Structural characterization of carangid fish myoglobins. Fish Physiol Biochem 38:1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Jaspers RT, Testerink J, Gaspera BD, Chanoine C, Bagowski CP, Laarse WJ (2014) Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia. Biol Open 3:718–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Joseph P, Suman SP, Li S, Beach CM, Steinke L, Fontaine M (2010) Characterization of bison (Bison bison) myoglobin. J Meat Sci 84:71–78

    Article  CAS  Google Scholar 

  • Kitahara Y, Matsuoka A, Kobayashi N, Shikama K (1990) Autoxidation of myoglobin from bigeye tuna fish (Thunnus obesus). Biochem Biophys Acta 1038:23–28

    CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle R (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Joo ST, Alderton AL, Hill DW, Faustman C (2003) Oxymyoglobin and lipid oxidation in yellowfin tuna (Thunnus albacores) loins. J Food Sci 68:1664–1668

    Article  CAS  Google Scholar 

  • Madden PW, Babcock MJ, Vayda ME, Cashon RE (2004) Structural and kinetic characterization of myoglobins from eurythermal and stenothermal fish species. Comp Biochem Physiol 137B:341–350

    Article  CAS  Google Scholar 

  • Marcinek DJ, Bonaventura J, Wittenberg JB, Block BA (2001) Oxygen affinity and amino acid sequence of myoglobins from endothermic and ectothermic fish. Am J Physiol Regul Integr Comp Physiol 280:R1123–R1133

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Ando M, Seoka M, Kawasaki K, Tsukamasa Y (2007) Changes of proximate compositions and myoglobin content in the dorsal ordinary muscles of the cultured Pacific bluefin tuna Thunnus orientalis with growth. Fish Sci 74:1155–1159

    Article  Google Scholar 

  • Nicholas JW, Weber LJ (1989) Comparative oxygen affinity of fish and mammalian myoglobins. J Comp Physiol 159B:205–209

    Article  Google Scholar 

  • Nurilmala M, Hedeki U, Kaneko G, Ochiai Y (2013) Assessment of commercial quality evaluation of yellowfin tuna thunnus albacares meat based on myoglobin properties. Food Sci Tech Res 19:237–243

    Article  CAS  Google Scholar 

  • Ochiai Y, Ueki N, Watabe S (2009) Effects of point mutations on the structural stability of tuna myoglobins. Comp Biochem Physiol 153B:223–228

    Article  CAS  Google Scholar 

  • Ochiai Y, Watanabe Y, Ozawa H, Ikegami S, Uchida N, Watabe S (2010) Thermal denaturation profiles of tuna myoglobin. Biosci Biotechnol Biochem 74:1673–1679

    Article  CAS  PubMed  Google Scholar 

  • Phillips SEV, Schoenboen BP (1981) Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin. Nature 92:81–82

    Article  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder HE, Ayres JC (1961) The autoxidation of crystallized beef myoglobin. J Food Sci 26:469–474

    Article  CAS  Google Scholar 

  • Suman SP, Faustman C, Stamer SL, Liebler DC (2007) Proteomics of lipid oxidation-induced oxidation in porcine and bovine oxymyoglobins. Proteomics 313:628–640

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Faustman C, Hoagland TA (2004) Krzywicki revisited: equations for spectrophotometric determination of myoglobin redox forms in aqueous meat extract. J Food Sci 69:C717–C720

    Article  CAS  Google Scholar 

  • Thiansilakul Y, Benjakul S, Richards MP (2011) Isolation, characterisation and stability of myoglobin from eastern little tuna (Euthynnus affinis) dark muscle. Food Chem 124:254–261

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trout GR (1989) Variation in myoglobin denaturation and color of cooked beef, pork and turkey meat as influenced by pH, sodium chloride, sodium tripolyphosphate, and cooking temperature. J Food Sci 54:536–540

    Article  CAS  Google Scholar 

  • Ueki N, Ochiai Y (2004) Primary structure and thermostability of bigeye tuna myoglobin in relation to those from other scombridae fish. Fish Sci 70:875–884

    Article  CAS  Google Scholar 

  • Ueki N, Ochiai Y (2006) Effects of amino acid replacement on the structural stability of fish myoglobin. J Biochem 140:649–656

    Article  CAS  PubMed  Google Scholar 

  • Ueki N, Chow CJ, Ochiai Y (2005) Characterization of bullet tuna myoglobin with reference to thermostability - structure relationship. J Agric Food Chem 53:4968–4975

    Article  CAS  PubMed  Google Scholar 

  • Wongwichian C, Klomklao S, Panpipat W, Benjakul S, Chaijan M (2015) Interrelationship between myoglobin and lipid oxidations in oxeye scad (Selar boops) muscle during iced storage. Food Chem 174:279–285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Japan Society for Promotion of Sciences (KAKENHI # 22380015 to Y. O.). The authors would like to thank Prof. Shugo Watabe, Prof. Hideki Ushio and Dr. Hideo Ozawa for their valuable suggestions throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Nurilmala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurilmala, M., Ochiai, Y. Molecular characterization of southern bluefin tuna myoglobin (Thunnus maccoyii). Fish Physiol Biochem 42, 1407–1416 (2016). https://doi.org/10.1007/s10695-016-0228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0228-0

Keywords

Navigation