Advertisement

Fish Physiology and Biochemistry

, Volume 42, Issue 5, pp 1383–1394 | Cite as

Influence of time, storage temperature and freeze/thaw cycles on the activity of digestive enzymes from gilthead sea bream (Sparus aurata)

  • Mikhail Solovyev
  • Enric Gisbert
Article

Abstract

In this study, we tested the effects of long-term storage (2 years) at −20 °C and short-term storage (several hours) in ice and freeze/thaw cycles on the activities of pancreatic, gastric and intestinal (brush border and cytosolic) digestive enzymes in a teleost fish species. The results revealed a significant lose in activity of pancreatic (trypsin, chymotrypsin, total alkaline proteases and α-amylase) and intestinal cytosolic (leucine–alanine peptidase) enzymes between 140 and 270 days of storage at −20 °C, whereas in contrast, the activity of all the assayed brush border enzymes remained constant during the first 2 years of storage at −20 °C. During short-term storage conditions, the most stable enzymes assayed were those of the enterocytes of the brush border, which did not show any change in activity after being held for 5 h in ice. Five freezing and thawing cycles did not affect the activity of the intestinal brush border enzymes and the cytosolic ones, whereas the activity of trypsin, α-amylase and bile-salt-activated lipase was significantly affected by the number of freezing and thawing cycles. No changes in pepsin activity were found in samples exposed to 1 and 2 freezing and thawing cycles.

Keywords

Pancreatic enzymes Brush border and cytosolic enzymes Storage temperature Freeze/thaw cycles 

References

  1. Ahsan N, Watabe S (2001) Kinetic and structural properties of two isoforms of trypsin isolated from the viscera of Japanese Anchovy, Engraulis japonicas. J Protein Chem 20(1):49–58CrossRefPubMedGoogle Scholar
  2. Aruee ANA, Simpson BK, Villalonga R (2007) Lipase fraction from the viscera of grey mullet (Mugil cephalus) isolation, partial purification and some biochemical characteristics. Enzyme Microb Technol 40:394–402CrossRefGoogle Scholar
  3. Asgeirsson B, Bjarnason JB (1991) Structural and kinetic properties of chymotrypsin from Atlantic cod (Gadus morhua). Comparison with bovine chymotrypsin. Comp Biochem Physiol B: Biochem Mol Biol 99(2):327–335Google Scholar
  4. Bessey OA, Lowry OH, Brock MJ (1946) Rapid coloric method for determination of alkaline phosphatase in five cubic millimeters of serum. J Biol Chem 164:321–329PubMedGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  6. Brunstein J (2012) Freeze-thaw cycles and nucleic acid stability: what’s safe for your samples? Med Lab Obs 47(9):44–47Google Scholar
  7. Chakrabarti I, Gani MA, Chaki KK, Sur R, Misra KK (1995) Digestive enzymes in 11 freshwater teleost fish species in relation to food habit and niche segregation. Comp Biochem Physiol A Physiol 112:167–177CrossRefGoogle Scholar
  8. Cohen T, Gertler A, Birk Y (1981) Pancreatic proteolytic enzymes from carp (Cyprinus carpio)—I. purification and physical properties of trypsin, chymotrypsin, elastase and carboxypeptidase B. Comp Biochem Physiol B: Biochem Mol Biol 69:639–646Google Scholar
  9. Crane RK, Boge G, Rigal A (1979) Isolation of brush border membranes in vesicular form from the intestinal spiral valve of the small dogfish Scyliorhinus canicula. Biochim Biophys Acta 554:264–267CrossRefPubMedGoogle Scholar
  10. Dahkqvist A (1970) Assay of intestinal disaccharidase. Enzym Biol Clin 11:52–66Google Scholar
  11. Fernandez I, Moyano FJ, Dıaz M, Martınez T (2001) Characterization of a-amylase activity in five species of Mediterranean sparid fishes. J Exp Mar Biol Ecol 262:1–12CrossRefGoogle Scholar
  12. García-Careño FL, Haard NF (1993) Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J Food Biochem 17:97–113CrossRefGoogle Scholar
  13. Gelman A, Kuz’mina V, Drabkin V, Glatman L (2003) Temperature dependent characteristics of intestinal glycyl-l-leucine dipeptidase in boreal zone fish. Comp Biochem Physiol B: Biochem Mol Biol 136(2):323–329CrossRefGoogle Scholar
  14. German DP, Gawlicka AK, Horn MH (2014) Evolution of ontogenetic dietary shifts and associated gut features in prickleback fishes (Teleostei: Stichaeidae). Comp Biochem Physiol B: Biochem Mol Biol 168:12–18CrossRefGoogle Scholar
  15. Gisbert E, Giménez G, Fernández I, Kotzamanis Y, Estévez A (2009) Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 267(3–4):381–387CrossRefGoogle Scholar
  16. Gisbert E, Morais S, Moyano FJ (2013) Feeding and Digestion. In: Qin JG (ed) Larval fish aquaculture. Nova Publishers, New York, pp 73–124Google Scholar
  17. Gjellesvik DR, Lombardo D, Walther BT (1992) Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. BBA 1124:123–134PubMedGoogle Scholar
  18. Görgün S, Akpınar MA (2012) Purification and characterization of lipase from the liver of carp, Cyprinus carpio L. (1758), Living in Lake Tödürge (Sivas, Türkiye). Turk J Fish Aquat Sci 12:207–215Google Scholar
  19. Heu MS, Kim HR, Pyeun JH (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Comp Biochem Physiol B Biochem Mol Biol 112(3):557–567CrossRefPubMedGoogle Scholar
  20. Hiranpradit S, Lopez A (1976) Activity and stability of a- and b-amylase at temperatures from 4 °C to −23 °C. J Food Sci 41:138–144CrossRefGoogle Scholar
  21. Hjelmeland K, Raa J (1982) Characteristics of two trypsin type isozymes isolated from the arctic fish capelin (Mallotus villosus). Comp Biochem Physiol B: Biochem Mol Biol 71(4):557–562CrossRefGoogle Scholar
  22. Holm H, Hanssen LE, Krogdahl A, Florholmen J (1988) High and low inhibitor soybean meals affect human duodenal proteinase activity differently: in vivo comparison with bovine serum albumin. J Nutr 118:515–520PubMedGoogle Scholar
  23. Huang K, Takahara S, Kinouchi T, Takeyama M, Ishida T, Ueyama H, Nishi K, Ohkubo I (1997) Alanyl aminopeptidase from human seminal plasma: purification, characterization, and immunohistochemical localization in the male genital tract. J Biochem 122(4):779–787CrossRefPubMedGoogle Scholar
  24. Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile-salt activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol Biochem 18:59–69CrossRefGoogle Scholar
  25. Izvekova GI, Solovyev MM, Kashinskaya EN, Izvekov EI (2013) Variations in the activity of digestive enzymes along the intestine of the burbot Lota lota expressed by different methods. Fish Physiol Biochem 39(5):1181–1193CrossRefPubMedGoogle Scholar
  26. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK, Saeki H (2006) Trypsins from yellowfin tuna (Thunnus albacores) spleen: purification and characterization. Comp Biochem Physiol B: Biochem Mol Biol 144:47–56CrossRefGoogle Scholar
  27. Krogdahl Å, Gajardo K, Kortner TM, Penn M, Gu M, Berge GM, Bakke AM (2015) Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). J Agric Food Chem 63(15):3887–3902CrossRefPubMedGoogle Scholar
  28. Kumar A, Venkatesu P (2012) Overview of the stability of α-chymotrypsin in different solvent media. Chem Rev 112(7):4283–4307CrossRefPubMedGoogle Scholar
  29. Kurtovic I, Marshall SN, Simpson BK (2006) Isolation and characterization of a trypsin fraction from the pyloric ceca of chinook salmon (Oncorhynchus tshawytscha). Comp Biochem Physiol B: Biochem Mol Biol 143:432–440CrossRefGoogle Scholar
  30. Kurtovic I, Marshall SN, Zhao X, Simpson BK (2009) Lipases from mammals and fishes. Rev Fish Sci 17(1):18–40CrossRefGoogle Scholar
  31. Kurtovic I, Marshall SN, Zhao X, Simpson BK (2010) Purification and properties of digestive lipases from Chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus novaezelandiae). Fish Physiol Biochem 36(4):1041–1060CrossRefPubMedGoogle Scholar
  32. Kuz’mina VV (1996) Influence of age digestive enzyme activity in some freshwater teleosts. Aquaculture 148:25–37CrossRefGoogle Scholar
  33. Lazo JP, Darias MJ, Gisbert E (2011) Ontogeny of the digestive tract. In: Holt GJ (ed) Larval fish nutrition. Wiley-Blackwell, West Sussex, p 3–46CrossRefGoogle Scholar
  34. Lee DH, Kim JW, Jeon SY, Park BK, Han BG (2010) Proteomic analysis of the effect of storage temperature on human serum. Ann Clin Lab Sci 40(1):61–70PubMedGoogle Scholar
  35. Maroux S, Louvard D, Baratti J (1973) The aminopeptidase from hog-intestinal brush border. Biochim Biophys Acta 321:282–295CrossRefPubMedGoogle Scholar
  36. Métais P, Bieth J (1968) Détermination de l'α-amylase. Ann Biol Clin 26:133–142Google Scholar
  37. Muller OH, Yamanouchi I (1958) Stable solutions of trypsin. Arch Biochem Biophys 76(2):328–341CrossRefPubMedGoogle Scholar
  38. Nicholson JA, Kim YS (1975) A one-step l-amino acid oxidase assay for intestinal peptide hydrolase activity. Anal Biochem 63:110–117CrossRefGoogle Scholar
  39. Nolasco N, Moyano-Lopez F, Vega-Villasante F (2011) Partial characterization of pyloric-duodenal lipase of gilthead seabream (Sparus aurata). Fish Physiol Biochem 37(1):43–52CrossRefPubMedGoogle Scholar
  40. Perera E, Moyano FJ, Díaz M, Perdomo-Morales R, Montero-Alejo V, Rodriguez-Viera L, Alonso E, Carrillo O, Galich GS (2008) Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comp Biochem Physiol B: Biochem Mol Biol 151(3):250–260CrossRefGoogle Scholar
  41. Raae AJ, Walter BT (1989) Purification and characterization of chymotrypsin, trypsin and elastase like proteinases from cod (Gadus morhua L.). Comp Biochem Physiol B: Biochem Mol Biol 93(2):317–324Google Scholar
  42. Rajagopalan TG, Moore S, Stein WH (1966) Pepsin from pepsinogen. Preparation and properties. J Biol Chem 241:4940–4950PubMedGoogle Scholar
  43. Reshkin SJ, Cassano G, Womersley C, Ahearn GA (1988) Preservation of glucose transport and enzyme activity in fish intestinal brush-border and basolateral membrane vesicles. J Exp Biol 140:123–135Google Scholar
  44. Rothman S, Liebow C, Isenman L (2002) Conservation of digestive enzymes. Physiol Rev 82(1):1–18CrossRefPubMedGoogle Scholar
  45. Rotllant G, Moyano FJ, Andrés M, Díaz M, Estévez A, Gisbert E (2008) Evaluation of fluorogenic substrates in the assessment of digestive enzymes in a decapod crustacean Maja brachydactyla larvae. Aquaculture 282:90–96CrossRefGoogle Scholar
  46. Ryan CA, Clary JJ, Tomimatsu Y (1965) Chicken chymotrypsin and turkey trypsin part II: physical and enzymic properties. Arch Biochem Biophys 110:175–183CrossRefPubMedGoogle Scholar
  47. Solovyev MM, Kashinskaya EN, Izvekova GI, Gisbert E, Glupov VV (2014) Feeding habits and ontogenic changes in digestive enzyme patterns in five freshwater teleosts. J Fish Biol 85(5):1395–1412CrossRefPubMedGoogle Scholar
  48. Sorensen SH, Noren O, Sjöström H, Danielsen M (1982) Amphiphilic pig intestinal microvillus maltase/glucoamylase. Structure and specificity. Eur J Biochem 126:559–568CrossRefPubMedGoogle Scholar
  49. Stefansson B, Helgadóttir L, Olafsdottir S, Gudmundsdottir A, Bjarnason JB (2010) Characterization of cold-adapted Atlantic cod (Gadus morhua) trypsin I—kinetic parameters, autolysis and thermal stability. Comp Biochem Physiol B: Biochem Mol Biol 155:186–194CrossRefGoogle Scholar
  50. Stiefel JS, Keller PJ (1973) Preparation and some properties of human pancreatic amylase including a comparison with human parotid amylase. BBA 302:345–361PubMedGoogle Scholar
  51. Tamiya T, Okahashi N, Sakuma R, Aoyama T, Akahane T, Juichiro JM (1985) Freeze denaturation of enzymes and its prevention with additives. Physiol Rev 22:446–456Google Scholar
  52. Ugolev AM, Egorova VV, Kuz’mina VV, Grusdkov AA (1983) Comparative-molecular characterization of membrane digestion in fish and mammals. Comp Biochem Physiol B: Biochem Mol Biol 76(3):627–635Google Scholar
  53. Worthington Biochemical Corporation (1972) Worthington enzyme manual: enzymes, enzyme reagents, related biochemicals. Worthington Biochemical Corp., FreeholdGoogle Scholar
  54. Wu G-P, Cao M-J, Chen Y, Liu B-X, Su W-J (2008) Leucine aminopeptidase from Red sea bream (Pagrus major) skeletal muscle: purification, characterization, cellular location, and tissue distribution. J Agric Food Chem 56:9653–9660CrossRefPubMedGoogle Scholar
  55. Xiong YL (1997) Protein denaturation and functionality losses. In: Erickson MC, Hung Y-C (eds) Quality in frozen food. Chapman & Hall, New York, pp 111–141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Systematics and Ecology of Animals Siberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Centre de Sant Carles de la RàpitaInstitut de Recerca i Tecnologia Agroalimentaries (IRTA)Sant Carles de la RàpitaSpain

Personalised recommendations