Fish Physiology and Biochemistry

, Volume 42, Issue 2, pp 659–671 | Cite as

Chemokine receptor CXCR3 in turbot (Scophthalmus maximus): cloning, characterization and its responses to lipopolysaccharide

  • Yadong Chen
  • Shuhong Zhou
  • Zhiqiang Jiang
  • Xiuli Wang
  • Yang Liu


Chemokine (C-X-C motif) receptor 3, a member of the G protein-coupled receptors superfamily, regulates the responses of many immune responses. In this experiment, we cloned and characterized the cDNA of CXCR3 in Scophthalmus maximus (turbot). A 5′-UTR of 216-bp, a 259-bp 3′-UTR with a poly (A) tail and a 1089-bp CDS encoding 362 amino acids form the cDNA of CXCR3, which is 1564-bp long. Phylogenetic analyses indicated that turbot CXCR3 shared a high similarity with other CXCR3s and shared more similarity with CXCR5 than the other subfamilies of chemokines. The CXCR3 protein in turbot showed the highest similarity with the CXCR3b from rainbow trout (44.5 %), which indicated that this CXCR3 gene/protein may be a CXCR3b isoform. Quantitative real-time PCR analysis showed that CXCR3 transcripts were constitutively expressed in all the tissues of the non-injected turbot used in this study, with the highest expression occurring in blood. Several immune-related tissues of fish, such as the spleen, head kidney, liver and blood, tissues, which were abundant of lymphocyte, were investigated in this study. CXCR3 gene was expressed at the highest level in blood than the other tested tissues. The injection experiment suggested that the CXCR3 expression level after LPS injection was significantly up-regulated in all immune-related tissues in turbot. These results improve our understanding of the functions of CXCR3 in the turbot immune response.


Chemokine receptor Immune response Lipopolysaccharide Scophthalmus maximus 



This work was supported by Grants from State 863 High-Technology R&D Project (2012AA10A408).


  1. Aghaallaei N, Bajoghli B, Schwarz H, Schorpp M, Boehm T (2010) Characterization of mononuclear phagocytic cells in medaka fish transgenic for a CXCR3a: gfp reporter. Proc Natl Acad Sci 107:18079–18084CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aquilino C, Castro R, Fischer U, Tafalla C (2014) Transcriptomic responses in rainbow trout gills upon infection with viral hemorrhagic septicemia virus (VHSV). Dev Comp Immunol 44:12–20CrossRefPubMedGoogle Scholar
  3. Balabanian K et al (2005) The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280:35760–35766. doi: 10.1074/jbc.M508234200 CrossRefPubMedGoogle Scholar
  4. Balan M, Pal S (2014) A novel CXCR3-B chemokine receptor-induced growth-inhibitory signal in cancer cells is mediated through the regulation of Bach-1 protein and Nrf2 protein nuclear translocation. J Biol Chem 289:3126–3137CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 96:6873–6878CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bauer JW et al (2009) Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum 60:3098–3107. doi: 10.1002/art.24803 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bhatt P et al (2014) Molecular cloning, characterization and gene expression of murrel CXC chemokine receptor 3a against sodium nitrite acute toxicity and microbial pathogens. Fish Shellfish Immunol 39:245–253CrossRefPubMedGoogle Scholar
  8. Burns JM et al (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203:2201–2213. doi: 10.1084/jem.20052144 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carmo CR, Esteves PJ, Ferrand N, van der Loo W (2006) Genetic variation at chemokine receptor CCR5 in leporids: alteration at the 2nd extracellular domain by gene conversion with CCR2 in Oryctolagus, but not in Sylvilagus and Lepus species. Immunogenetics 58:494–501. doi: 10.1007/s00251-006-0095-4 CrossRefPubMedGoogle Scholar
  10. Chadzinska M, Golbach L, Pijanowski L, Scheer M, Verburg-van Kemenade B (2014) Characterization and expression analysis of an interferon-γ2 induced chemokine receptor CXCR3 in common carp (Cyprinus carpio L.). Dev Comp Immunol 47:68–76CrossRefPubMedGoogle Scholar
  11. Chang MX, Sun BJ, Nie P (2007) The first non-mammalian CXCR3 in a teleost fish: gene and expression in blood cells and central nervous system in the grass carp (Ctenopharyngodon idella). Mol Immunol 44:1123–1134. doi: 10.1016/j.molimm.2006.07.280 CrossRefPubMedGoogle Scholar
  12. Chen SL, Li W, Meng L, Sha ZX, Wang ZJ, Ren GC (2007a) Molecular cloning and expression analysis of a hepcidin antimicrobial peptide gene from turbot (Scophthalmus maximus). Fish Shellfish Immunol 22:172–181. doi: 10.1016/j.fsi.2006.04.004 CrossRefPubMedGoogle Scholar
  13. Chen SL, Zhang YX, Xu JY, Meng L, Sha ZX, Ren GC (2007b) Molecular cloning, characterization and expression analysis of natural resistance associated macrophage protein (Nramp) cDNA from turbot (Scophthalmus maximus). Comp Biochem Physiol B Biochem Mol Biol 147:29–37. doi: 10.1016/j.cbpb.2006.12.003 CrossRefPubMedGoogle Scholar
  14. Chen SL, Liu Y, Dong XL, Meng L (2010) Cloning, characterization, and expression analysis of a CC chemokine gene from turbot (Scophthalmus maximus). Fish Physiol Biochem 36:147–155. doi: 10.1007/s10695-008-9218-1 CrossRefPubMedGoogle Scholar
  15. Chen C, Hu YH, Xiao ZZ, Sun L (2013) SmCCL19, a CC chemokine of turbot Scophthalmus maximus, induces leukocyte trafficking and promotes anti-viral and anti-bacterial defense. Fish Shellfish Immunol 35:1677–1682. doi: 10.1016/j.fsi.2013.08.020 CrossRefPubMedGoogle Scholar
  16. Colvin RA, Campanella GS, Sun J, Luster AD (2004) Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem 279:30219–30227. doi: 10.1074/jbc.M403595200 CrossRefPubMedGoogle Scholar
  17. Daniels GD, Zou J, Charlemagne J, Partula S, Cunningham C, Secombes CJ (1999) Cloning of two chemokine receptor homologs (CXC-R4 and CC-R7) in rainbow trout Oncorhynchus mykiss. J Leukoc Biol 65:684–690PubMedGoogle Scholar
  18. DeVries ME, Kelvin AA, Xu L, Ran L, Robinson J, Kelvin DJ (2006) Defining the origins and evolution of the chemokine/chemokine receptor system. J Immunol 176:401–415CrossRefPubMedGoogle Scholar
  19. Enghard P et al (2009) CXCR3+ CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients. Arthritis Rheum 60:199–206. doi: 10.1002/art.24136 CrossRefPubMedGoogle Scholar
  20. Esche C, Stellato C, Beck LA (2005) Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 125:615–628. doi: 10.1111/j.0022-202X.2005.23841.x CrossRefPubMedGoogle Scholar
  21. Esteves PJ, Abrantes J, van der Loo W (2007) Extensive gene conversion between CCR2 and CCR5 in domestic cat (Felis catus). Int J Immunogenet 34:321–324. doi: 10.1111/j.1744-313X.2007.00716.x CrossRefPubMedGoogle Scholar
  22. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2:108–115. doi: 10.1038/84209 CrossRefPubMedGoogle Scholar
  23. Harvey CE et al (2003) Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and lobular inflammation. J Leukoc Biol 74:360–369CrossRefPubMedGoogle Scholar
  24. Helbig KJ, Ruszkiewicz A, Semendric L, Harley HA, McColl SR, Beard MR (2004) Expression of the CXCR3 ligand I-TAC by hepatocytes in chronic hepatitis C and its correlation with hepatic inflammation. Hepatology 39:1220–1229. doi: 10.1002/hep.20167 CrossRefPubMedGoogle Scholar
  25. Helbig KJ, Ruszkiewicz A, Lanford RE, Berzsenyi MD, Harley HA, McColl SR, Beard MR (2009) Differential expression of the CXCR3 ligands in chronic hepatitis C virus (HCV) infection and their modulation by HCV in vitro. J Virol 83:836–846. doi: 10.1128/JVI.01388-08 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hokeness KL, Deweerd ES, Munks MW, Lewis CA, Gladue RP, Salazar-Mather TP (2007) CXCR3-dependent recruitment of antigen-specific T lymphocytes to the liver during murine cytomegalovirus infection. J Virol 81:1241–1250. doi: 10.1128/JVI.01937-06 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Holst PJ, Orskov C, Qvortrup K, Christensen JP, Thomsen AR (2007) CCR5 and CXCR3 are dispensable for liver infiltration, but CCR5 protects against virus-induced T-cell-mediated hepatic steatosis. J Virol 81:10101–10112. doi: 10.1128/JVI.01242-07 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hu YH, Chen L, Sun L (2011) CXCL8 of Scophthalmus maximus: expression, biological activity and immunoregulatory effect. Dev Comp Immunol 35:1032–1039. doi: 10.1016/j.dci.2011.04.002 CrossRefPubMedGoogle Scholar
  29. Jia A, Zhang XH (2009) Molecular cloning, characterization, and expression analysis of the CXCR4 gene from Turbot: Scophthalmus maximus. J Biomed Biotechnol 2009:767893. doi: 10.1155/2009/767893 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi: 10.1006/jmbi.2000.4315 CrossRefPubMedGoogle Scholar
  31. Kunkel SL, Strieter RM, Lindley IJ, Westwick J (1995) Chemokines: new ligands, receptors and activities. Immunol Today 16:559–561. doi: 10.1016/0167-5699(95)80076-X CrossRefPubMedGoogle Scholar
  32. Lacotte S, Brun S, Muller S, Dumortier H (2009) CXCR3, inflammation, and autoimmune diseases. Ann NY Acad Sci 1173:310–317. doi: 10.1111/j.1749-6632.2009.04813.x CrossRefPubMedGoogle Scholar
  33. Larrubia JR et al (2007) The role of CCR5/CXCR3 expressing CD8+ cells in liver damage and viral control during persistent hepatitis C virus infection. J Hepatol 47:632–641. doi: 10.1016/j.jhep.2007.04.009 CrossRefPubMedGoogle Scholar
  34. Lasagni L et al (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197:1537–1549CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lee EY, Lee ZH, Song YW (2009) CXCL10 and autoimmune diseases. Autoimmun Rev 8:379–383. doi: 10.1016/j.autrev.2008.12.002 CrossRefPubMedGoogle Scholar
  36. Liu Y, Chen S-L, Meng L, Zhang Y-X (2007a) Cloning, characterization and expression analysis of a CXCL10-like chemokine from turbot (Scophthalmus maximus). Aquaculture 272:199–207. doi: 10.1016/j.aquaculture.2007.07.215 CrossRefGoogle Scholar
  37. Liu Y, Chen SL, Meng L, Zhang YX (2007b) Cloning, characterization and expression analysis of a novel CXC chemokine from turbot (Scophthalmus maximus). Fish Shellfish Immunol 23:711–720. doi: 10.1016/j.fsi.2007.01.008 CrossRefPubMedGoogle Scholar
  38. Martini G et al (2005) CXCR3/CXCL10 expression in the synovium of children with juvenile idiopathic arthritis. Arthritis Res Ther 7:R241–R249. doi: 10.1186/ar1481 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mohan K, Issekutz TB (2007) Blockade of chemokine receptor CXCR3 inhibits T cell recruitment to inflamed joints and decreases the severity of adjuvant arthritis. J Immunol 179:8463–8469CrossRefPubMedGoogle Scholar
  40. Nomiyama H et al (2008) Extensive expansion and diversification of the chemokine gene family in zebrafish: identification of a novel chemokine subfamily CX. BMC Genom 9:222. doi: 10.1186/1471-2164-9-222 CrossRefGoogle Scholar
  41. Nomiyama H, Osada N, Yoshie O (2011) A family tree of vertebrate chemokine receptors for a unified nomenclature. Dev Comp Immunol 35:705–715. doi: 10.1016/j.dci.2011.01.019 CrossRefPubMedGoogle Scholar
  42. Norii M, Yamamura M, Iwahashi M, Ueno A, Yamana J, Makino H (2006) Selective recruitment of CXCR3+ and CCR5+ CCR4+ T cells into synovial tissue in patients with rheumatoid arthritis. Acta Med Okayama 60:149–157PubMedGoogle Scholar
  43. Park KC et al (2009) Immunological responses of turbot (Psetta maxima) to nodavirus infection or polyriboinosinic polyribocytidylic acid (pIC) stimulation, using expressed sequence tags (ESTs) analysis and cDNA microarrays. Fish Shellfish Immunol 26:91–108. doi: 10.1016/j.fsi.2008.03.010 CrossRefPubMedGoogle Scholar
  44. Perelygin AA, Zharkikh AA, Astakhova NM, Lear TL, Brinton MA (2008) Concerted evolution of vertebrate CCR2 and CCR5 genes and the origin of a recombinant equine CCR5/2 gene. J Hered 99:500–511. doi: 10.1093/jhered/esn029 CrossRefPubMedGoogle Scholar
  45. Qin S et al (1998) The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101:746–754. doi: 10.1172/JCI1422 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ruth JH et al (2001) Selective lymphocyte chemokine receptor expression in the rheumatoid joint. Arthritis Rheum 44:2750–2760CrossRefPubMedGoogle Scholar
  47. Saha NR et al (2007) Description of a fugu CXC chemokine and two CXC receptor genes, and characterization of the effects of different stimulators on their expression. Fish Shellfish Immunol 23:1324–1332CrossRefPubMedGoogle Scholar
  48. Shields DC (2000) Gene conversion among chemokine receptors. Gene 246:239–245CrossRefPubMedGoogle Scholar
  49. Singh UP, Venkataraman C, Singh R, Lillard JW Jr (2007) CXCR3 axis: role in inflammatory bowel disease and its therapeutic implication Endocr Metab Immune Disord Drug. Targets 7:111–123Google Scholar
  50. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 CrossRefPubMedGoogle Scholar
  51. Thelen M, Thelen S (2008) CXCR7, CXCR4 and CXCL12: an eccentric trio? J Neuroimmunol 198:9–13. doi: 10.1016/j.jneuroim.2008.04.020 CrossRefPubMedGoogle Scholar
  52. Vazquez-Salat N, Yuhki N, Beck T, O’Brien SJ, Murphy WJ (2007) Gene conversion between mammalian CCR2 and CCR5 chemokine receptor genes: a potential mechanism for receptor dimerization. Genomics 90:213–224. doi: 10.1016/j.ygeno.2007.04.009 CrossRefPubMedGoogle Scholar
  53. Wang T, Hanington PC, Belosevic M, Secombes CJ (2008) Two macrophage colony-stimulating factor genes exist in fish that differ in gene organization and are differentially expressed. J Immunol 181:3310–3322CrossRefPubMedGoogle Scholar
  54. Wenzel J, Schmidt R, Proelss J, Zahn S, Bieber T, Tuting T (2006) Type I interferon-associated skin recruitment of CXCR3+ lymphocytes in dermatomyositis. Clin Exp Dermatol 31:576–582. doi: 10.1111/j.1365-2230.2006.02150.x CrossRefPubMedGoogle Scholar
  55. Wenzel J, Proelss J, Wiechert A, Zahn S, Bieber T, Tuting T (2007) CXCR3-mediated recruitment of cytotoxic lymphocytes in lupus erythematosus profundus. J Am Acad Dermatol 56:648–650. doi: 10.1016/j.jaad.2006.08.014 CrossRefPubMedGoogle Scholar
  56. Xie JH et al (2003) Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. J Leukoc Biol 73:771–780CrossRefPubMedGoogle Scholar
  57. Xu QQ, Chang MX, Sun RH, Xiao FS, Nie P (2010) The first non-mammalian CXCR5 in a teleost fish: molecular cloning and expression analysis in grass carp (Ctenopharyngodon idella). BMC Immunol 11:25. doi: 10.1186/1471-2172-11-25 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Xu Q et al (2014) Sequence and expression analysis of rainbow trout CXCR2, CXCR3a and CXCR3b aids interpretation of lineage-specific conversion, loss and expansion of these receptors during vertebrate evolution. Dev Comp Immunol 45:201–213CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zeremski M, Petrovic LM, Talal AH (2007) The role of chemokines as inflammatory mediators in chronic hepatitis C virus infection. J Viral Hepat 14:675–687. doi: 10.1111/j.1365-2893.2006.00838.x PubMedGoogle Scholar
  60. Zeremski M et al (2008) Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology 48:1440–1450. doi: 10.1002/hep.22500 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhang YX, Chen SL (2006) Molecular identification, polymorphism, and expression analysis of major histocompatibility complex class IIA and B genes of turbot (Scophthalmus maximus). Mar Biotechnol (NY) 8:611–623. doi: 10.1007/s10126-005-6174-y CrossRefGoogle Scholar
  62. Zhang H, Thorgaard GH, Ristow SS (2002) Molecular cloning and genomic structure of an interleukin-8 receptor-like gene from homozygous clones of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 13:251–258CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yadong Chen
    • 1
    • 2
  • Shuhong Zhou
    • 1
  • Zhiqiang Jiang
    • 1
  • Xiuli Wang
    • 1
  • Yang Liu
    • 1
  1. 1.Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of AgricultureDalian Ocean UniversityDalianPeople’s Republic of China
  2. 2.Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoPeople’s Republic of China

Personalised recommendations