Advertisement

Fish Physiology and Biochemistry

, Volume 42, Issue 1, pp 149–165 | Cite as

Structural and biochemical characterization and evolutionary relationships of the fatty acid-binding protein 10 (Fabp10) of hake (Merluccius hubbsi)

  • Cecilia Alejandra Crovetto
  • Osvaldo León Córdoba
Article

Abstract

A fatty acid-binding protein (FABP) from the liver of Argentine hake (Merluccius hubbsi) was isolated and characterized and its expression analyzed. The determination of its partial primary structures (72 %) showed that it presents highest identity with Fabp10, commonly termed liver basic-type FABP. The evolutionary tree showed greater relationship between the Fabp10 of hake (Me Fabp10) and the Fabp10 and the Fabp10a of teleost fish. Me Fabp10 had low affinity for palmitic, oleic and palmitoleic acid and high affinity for bilirubin, lysophosphatidylcholine and lysophosphatidylethanolamine, all of them important in the metabolic functions of the liver. Me Fabp10 was able to bind only one cis-parinaric acid molecule and was found to be expressed only in the liver.

Keywords

Hake Fatty acid-binding protein Liver Fabp10 

Notes

Acknowledgments

We would like to thank Dr. Roxana Silva for her assistance in phylogenetic analysis, Ing. Enrique Rost for his assistance in fatty acid analysis, Dr. Eduardo Fernández for assistance in immunoblot and Lic. Hebe Pérez Gold for antibody production. Amino acid sequencing was performed in the LANAIS-PROEM (National Protein Sequencing Facility, UBA-CONICET, Buenos Aires, Argentina).

References

  1. Agulleiro MJ, André M, Morais S, Cerdá J, Babin PJ (2008) High transcript level of a fatty acid-binding protein 11 but not of vitellogenin receptor is correlated to ovarian follicle atresia in a teleost fish (Solea senegalensis). Cybium 32(2 suppl):225Google Scholar
  2. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386CrossRefPubMedGoogle Scholar
  3. Baba K, Takahashi Y, Aoyagi Y, Odani S (1999) The amino acid sequence of a lamprey (Entosphenus japonicus) liver fatty acid-binding protein identified its close relationship to cardiac fatty acid-binding proteins of mammalia. Comp Biochem Physiol B Biochem Mol Biol 123(2):223–228CrossRefPubMedGoogle Scholar
  4. Babin PJ (2009) Fatty acid-binding proteins. In: Esteves A (ed) Molecular evolution of vertebrate fatty acid-binding proteins, 1st edn. Transworld Research Network, Kerala, pp 17–29Google Scholar
  5. Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S, Jones TA (1994) Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem 45:89–151CrossRefPubMedGoogle Scholar
  6. Bayır M, Bayır A, Wright JM (2015) Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part D 14:26–32Google Scholar
  7. Brandl H, Gross RA, Lenz RW, Füller RC (1988) Pseudomonas oleovorans as a source of poly(β-Hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54(8):1977–1982PubMedCentralPubMedGoogle Scholar
  8. Bruslé J, Anadon GG (1996) The Structure and function of fish liver. In: Munshi JSD, Dutta HM (eds) Fish morphology: horizon of new research, 1st edn. Science Publishers Inc, Lebanon, pp 77–93Google Scholar
  9. Capaldi S, Guariento M, Saccomani G, Fessas D, Perduca M, Monaco HL (2007) A single amino acid mutation in zebrafish (Danio rerio) liver bile acid-binding protein can change the stoichiometry of ligand binding. J Biol Chem 282(42):31008–31018CrossRefPubMedGoogle Scholar
  10. Ceciliani F, Mónaco HL, Ronchi S, Faotto L, Spadon P (1994) The primary structure of a basic (pI 9.0) fatty acid-binding protein from liver of Gallus domesticus. Comp Biochem Physiol B Biochem Mol Biol 109:261–271CrossRefPubMedGoogle Scholar
  11. Conrotto P, Hellman U (2005) Sulfonation chemistry as a powerful tool for MALDI TOF/TOF de novo sequencing and post-translational modification analysis. J Biomol Techol 16(4):441–452Google Scholar
  12. Córdoba OL, Sánchez EI, Veerkamp JH, Santomé JA (1998) Presence of intestinal, liver and heart/adipocyte fatty acid-binding protein types in the liver of a chimaera fish. Int J Biochem Cell Biol 30(12):1403–1413CrossRefPubMedGoogle Scholar
  13. Córdoba OL, Sánchez EI, Santomé JA (1999) The main fatty acid-binding protein in the liver of the shark (Halaetunus bivius) belongs to the liver basic type. Isolation, amino acid sequence determination and characterization. Eur J Biochem 265(2):832–838CrossRefPubMedGoogle Scholar
  14. Cousseau MB, Perrotta RG (2000) Peces marinos de Argentina. Biología, distribución, pesca. Publicaciones especiales INIDEP, Mar del PlataGoogle Scholar
  15. Denovan-Wright E, Pierce M, Sharma M, Wright J (2000) cDNA sequence and tissue-specific expression of a basic liver-type fatty acid binding protein in adult zebrafish (Danio rerio). Biochim Biophys Acta 1492(1):227–232CrossRefPubMedGoogle Scholar
  16. Di Pietro SM, Santomé JA (1996) Presence of two new fatty acid binding proteins in catfish liver. Biochem Cell Biol 74:675–680CrossRefPubMedGoogle Scholar
  17. Di Pietro SM, Santomé JA (2000) Isolation, characterization and binding properties of two rat liver fatty acid-binding protein isoforms. Biochem Biophys Acta 1478:186–200PubMedGoogle Scholar
  18. Di Pietro SM, Santomé JA (2001) Structural and biochemical characterization of the lungfish (Lepidosiren paradoxa) liver basic fatty-acid binding protein. Arch Biochem Biophys 388(1):81–90CrossRefPubMedGoogle Scholar
  19. Di Pietro SM, Dell´Angélica EC, Veerkamp JH, Sterin-Speziale N, Santomé JA (1997) Amino acid sequence, binding properties and evolutionary relationships of the basic liver fatty acid-binding protein from the catfish Rhamdia sapo. Eur J Biochem 249(2):510–517CrossRefPubMedGoogle Scholar
  20. Di Pietro SM, Veerkamp JH, Santomé JA (1999) Isolation, amino acid sequencing and binding properties of two fatty acid-binding proteins from axolotl (Ambistoma mexicanum) liver. Evolutionary implications. Eur J Biochem 259:127–134CrossRefGoogle Scholar
  21. Di Pietro SM, Córsico B, Perduca M, Mónaco HL, Santomé JA (2003) Structural and biochemical characterization of toad liver fatty acid-binding protein. Biochemistry 42:8192–8203CrossRefPubMedGoogle Scholar
  22. Falch E, Overby A, Rustad T (2006) Natural antioxidants in cod liver oil: pitfalls during oxidative stability assessment. In: Luten JB, Jacobsen C, Bekaert K, Sæbø A, Oehlenschlager J (eds) Seafood from fish to dish, quality, safety and processing of wild and farmed fish, 1st edn. Wageningen Academic Publishers, Wageningen, pp 127–137Google Scholar
  23. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  24. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar
  25. Glatz JFC, van der Vusse GJ (1996) Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 35:243–282CrossRefPubMedGoogle Scholar
  26. Glatz JFC, Veerkamp JH (1983) A radiochemical procedure for the assay of fatty acid-binding by proteins. Anal Biochem 132:89–95CrossRefPubMedGoogle Scholar
  27. Guil-Guerrero JL, Venegas-Venegas E, Rincón-Cervera MA, Suarez MD (2011) Fatty acid profiles of livers from selected marine fish species. J Food Compos Anal 24:217–222CrossRefGoogle Scholar
  28. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  29. Harlow E, Lane D (1999) Using antibodies: a laboratory manual. Cold Spryng Harb Lab Press, Cold Spryng HarborGoogle Scholar
  30. Haunerland NH, Spener F (2004) Properties and physiological significance of fatty acid binding proteins. In: van der Vusse G (ed) Advances in molecular and cell biology, lipobiology, vol 33. Elsevier, New York, pp 99–120Google Scholar
  31. Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119(1):142–147CrossRefPubMedGoogle Scholar
  32. Hertzel AV, Bernlohr DA (2000) The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 11(5):175–180CrossRefPubMedGoogle Scholar
  33. Kim S (2006) Basic liver-type fatty acid binding protein in rainbow trout Oncorhynchus mykiss: sequence and gene expression in tissue. Fish Sci 72:1316–1318CrossRefGoogle Scholar
  34. Kim HK, Storch J (1992) Mechanism of free fatty acid transfer from rat heart acid binding protein to phospholipid membrane. Evidence for a collitional process. J Biol Chem 267:20051–20056PubMedGoogle Scholar
  35. Liu RZ, Li X, Godboor R (2008) A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals: transcription in rat retina and testis. Genomics 92:436–445CrossRefPubMedGoogle Scholar
  36. Lloret J, Demestre M, Sánchez-Pardo J (2008) Lipid (energy) reserves of European hake (Merluccius merluccius) in the North-Western mediterranean. Vie et Milieu-life Environ 58(1):75–85Google Scholar
  37. Matarese V, Stone RL, Waggoner DW, Bernlohr DA (1989) Intracellular fatty acid trafficking and the role of cytosolic lipid binding proteins. Prog Lipid Res 28:245–272CrossRefPubMedGoogle Scholar
  38. Medina G, Castro L, Pantoja S (2014) Fatty acids in Merluccius australis tissues, a comparison between females from inshore and offshore spawning areas in the Chilean Patagonia. Fish Res 160:41–49CrossRefGoogle Scholar
  39. Mommsen TP, Walsh PJ (1989) Evolution of urea synthesis in vertebrates: the piscine connection. Science 243:72–75CrossRefPubMedGoogle Scholar
  40. Nemecz G, Hubbell T, Jefferson JR, Lowe JB, Schroeder F (1991a) Interaction of fatty acids with recombinant rat intestinal and liver fatty acid-binding proteins. Arch Biochem Biophys 286:300–309CrossRefPubMedGoogle Scholar
  41. Nemecz G, Jefferson JR, Schroeder F (1991b) Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins Spectroscopic studies. J Biol Chem 266(26):17112–17123PubMedGoogle Scholar
  42. Ono T, Odani S (2010) Initial studies of the cytoplasmic FABP superfamily. Proc Jpn Acad Ser B Phys Biol Sci 86(3):220–228PubMedCentralCrossRefPubMedGoogle Scholar
  43. Parmar MB, Wright JM (2013) Comparative genomic organization and tissue specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes. Genome 56(11):291–701CrossRefGoogle Scholar
  44. Parmar MB, Venkatachalam AB, Wright JM (2012) The evolutionary relationship of the transcriptionally active fabp11a (intronless) and fabp11b genes of medaka with fabp11 genes of other teleost fishes. FEBS J 279(13):2310–2321CrossRefPubMedGoogle Scholar
  45. Richieri GV, Ogata RT, Kleinfeld AM (1996) Kinetics of fatty acid interactions with fatty acid binding proteins from adipocyte, heart and intestine. J Biol Chem 271:11291–11300CrossRefPubMedGoogle Scholar
  46. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  47. Santomé JA, Di Pietro SM, Cavagnari BM, Córdoba OL, Dell´Angélica EC (1998) Fatty acid-binding proteins. Chronological description and discussion of hypotheses involving their molecular evolution. Trends Comp Biochem Physiol 4:23–38Google Scholar
  48. Scapin G, Spadon P, Mammi M, Zanotti G, Mónaco HL (1990) Crystal structure of chicken liver basic fatty acid-binding protein at 2.7 Å resolution. Mol Cell Biochem 98:95–99CrossRefPubMedGoogle Scholar
  49. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefPubMedGoogle Scholar
  50. Schleicher CH, Santomé JA (1996) Purification. Characterization and partial amino acid sequencing of an amphibian liver fatty acid binding protein. Biochem Cell Biol 74:109–115CrossRefPubMedGoogle Scholar
  51. Schleicher CH, Córdoba OL, Santomé JA, Dell´Angélica EC (1995) Molecular evolution of the multigene family of intracellular lipid-binding proteins. Biochem Mol Biol Int 36:1117–1125PubMedGoogle Scholar
  52. Schroeder F, Myers-Payne SC, Billheimer JT, Wood WG (1995) Probing the ligand binding sites of fatty acid and sterol carrier proteins: effects of ethanol. Biochemistry 34(37):11919–11927CrossRefPubMedGoogle Scholar
  53. Sharma MK, Liu RZ, Thisse C, Thisse B, Denovan-Wright EM, Wright JM (2006) Hierarchical subfunctionalization of fabp1a, fabp1b and fabp10 tissue-specific expression may account for retention of these duplicated genes in the zebrafish (Danio rerio) genome. FEBS J 273(14):3216–3229CrossRefPubMedGoogle Scholar
  54. Smathers RL, Petersen DR (2011) The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 5(3):170–191PubMedCentralCrossRefPubMedGoogle Scholar
  55. Storch J, McDermott L (2009) Structural and functional analysis of fatty acid-binding proteins. J Lipid Res 50 (Suppl.):126–131Google Scholar
  56. Storch J, Herr FM, Hsu KT, Kim HK, Liou HL, Smith ER (1996) The role of membranes and intracellular binding proteins in cytoplasmic transport of hydrophobic molecules: fatty acid-binding proteins. Comp Biochem Physiol 115B:333–339CrossRefGoogle Scholar
  57. Tatusova TA, Madden TL (1999) Blast 2 sequences, a new tool for comparing protein and nucleotide sequence. FEMS Microbiol Lett 174(2):247–250CrossRefPubMedGoogle Scholar
  58. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting. Position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralCrossRefPubMedGoogle Scholar
  59. Thompson JB, Winters N, Terwey D, Bratt J, Banaszak L (1997) The crystal structure of the liver fatty acid-binding protein. J Biol Chem 272:7140–7150CrossRefPubMedGoogle Scholar
  60. Thumser AE, Voysey J, Wilton DC (1996) Mutations of recombinant rat live fatty acid-binding protein at residues 102 and 122 alter its structural integrity and affinity for physiological ligands. Biochem J 314(3):943–949PubMedCentralCrossRefPubMedGoogle Scholar
  61. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354PubMedCentralCrossRefPubMedGoogle Scholar
  62. Veerkamp JH, Peeters RA, Maatman RGHJ (1991) Structural and functional features of different types of cytoplasmatic fatty acid-binding proteins. Biochim Biophys Acta 1081:1–24CrossRefPubMedGoogle Scholar
  63. Venkatachalam AB, Thisse C, Thisse B, Wright JM (2009) Differential tissue-specific distribution of transcripts for the duplicated fatty acid-binding protein 10 (fabp10) genes in embryos, larvae and adult zebrafish (Danio rerio). FEBS J 276:6787–6797CrossRefPubMedGoogle Scholar
  64. Zhang Q, Shi H, Liu W, Wang Y, Wang Q, Li H (2013) Differential expression of L-FABP and L-BABP between fat and lean chickens. Genet Mol Res 12(4):4192–4206CrossRefPubMedGoogle Scholar
  65. Zimmerman AW, van Moerkerk HTB, Veerkamp JH (2001) Ligand specificity and conformational stability of human fatty acid-binding proteins. Int J Biochem Cell Biol 33:865–876CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cecilia Alejandra Crovetto
    • 1
  • Osvaldo León Córdoba
    • 1
  1. 1.Departamento de Bioquímica, GQBMRNP-CRIDECIT, Facultad de Ciencias NaturalesUniversidad Nacional de la Patagonia San Juan BoscoComodoro RivadaviaArgentina

Personalised recommendations