Fish Physiology and Biochemistry

, Volume 41, Issue 4, pp 981–989 | Cite as

Effects of glucose, insulin and triiodothyroxine on leptin and leptin receptor expression and the effects of leptin on activities of enzymes related to glucose metabolism in grass carp (Ctenopharyngodon idella) hepatocytes

  • Rong-Hua Lu
  • Yi Zhou
  • Xiao-Chen Yuan
  • Xu-Fang Liang
  • Liu Fang
  • Xiao-Li Bai
  • Min Wang
  • Yu-Hua Zhao


Leptin is an important regulator of appetite and energy expenditure in mammals, but its role in fish metabolism control is poorly understood. Our previous studies demonstrated that leptin has an effect on the regulation of food intake and energy expenditure as well as lipid metabolism (stimulation of lipolysis and inhibition of adipogenesis) in the grass carp Ctenopharyngodon idella. To further investigate the role of leptin in fish, the effects of glucose, insulin and triiodothyroxine (T3) on the expression levels of leptin and leptin receptor (Lepr) and the effects of leptin on the activities of critical glucose metabolism enzymes in grass carp hepatocytes were evaluated in the present study. Our data indicated that leptin gene expression was induced by glucose in a dose-dependent manner, while Lepr gene expression exhibited a biphasic change. A high dose of insulin (100 ng/mL) significantly up-regulated the expression of leptin and Lepr. Leptin expression was markedly up-regulated by a low concentration of T3 but inhibited by a high concentration of T3. T3 up-regulated Lepr expression in a dose-dependent manner. Together, these data suggest that leptin had a close relationship with three factors (glucose, insulin and T3) and might participate in the regulation of glucose metabolism in grass carp. In addition, we also found that leptin affected the activities of key enzymes that are involved in glucose metabolism, which might be mediated by insulin receptor substrate-phosphoinositol 3-kinase signaling.


Leptin Leptin receptor Glucose metabolism Grass carp (Ctenopharyngodon idella) hepatocytes 



Glucose 6-phosphatase


Glucose-6-phosphate dehydrogenase




Insulin receptor substrate-phosphatidylinositol-3-OH-kinase


Janus kinase-signal transducer and activator of transcription


Leptin receptor


Lipoprotein lipase


Malic enzyme


Neuropeptide Y


Phosphoenolpyruvate carboxykinase


Pyruvate kinase


Stearoyl-CoA desaturase 1a




Uncoupling protein 2



This work was financially supported by the National Natural Science Foundation of China (31172420, 31072219, 31402311), the National Basic Research Program of China (2014CB138601), the China Postdoctoral Science Foundation (52201-12971, 2013M531708). We thank Dr. Ya-Xiong Tao (Auburn University, Auburn, Alabama, USA) for extensive editing of the manuscript.


  1. Aguilar AJ, Conde-Sieira M, Polakof S, Míguez JM, Soengas JL (2010) Central leptin treatment modulates brain glucosensing function and peripheral energy metabolism of rainbow trout. Peptides 31(6):1044–1054PubMedCrossRefGoogle Scholar
  2. Alegre M, Ciudad CJ, Fillat C, Guinovart JJ (1988) Determination of glucose-6-phosphatase activity using the glucose-dehydrogenase-coupled reaction. Anal Biochem 173(1):185–189PubMedCrossRefGoogle Scholar
  3. Aronoff SL, Berkowitz K, Shreiner B, Want L (2004) Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr 17(3):183–190CrossRefGoogle Scholar
  4. Bentle LA, Lardy HA (1976) Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J Biol Chem 251(10):2916–2921PubMedGoogle Scholar
  5. Bjørbæk C, Kahn BB (2004) Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 59:305–331PubMedCrossRefGoogle Scholar
  6. Bossowski A, Sawicka B, Szalecki M, Koput A, Wysocka J, Zelazowska-Rutkowska B (2010) Analysis of serum adiponectin, resistin and leptin levels in children and adolescents with autoimmune thyroid disorders. J Pediatr Endocrinol Metab 23(4):369–377PubMedCrossRefGoogle Scholar
  7. Cabanelas A, Cordeiro A, Santos Almeida NA, Monteiro de Paula GS, Coelho VM, Ortiga-Carvalho TM, Pazos-Moura CC (2010) Effect of triiodothyronine on adiponectin expression and leptin release by white adipose tissue of normal rats. Horm Metab Res 42(4):254–260PubMedCrossRefGoogle Scholar
  8. Chinookoswong N, Wang JL, Shi ZQ (1999) Leptin restores euglycemia and normalizes glucose turnover in insulin deficient diabetes in the rat. Diabetes 48(7):1487–1492PubMedCrossRefGoogle Scholar
  9. Copeland DL, Duff RJ, Liu Q, Prokop J, Londraville RL (2011) Leptin in teleost fishes: an argument for comparative study. Front Physiol 2:26PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dagogo-Jack S, Tykodi G, Umamaheswaran I (2005) Inhibition of cortisol biosynthesis decreases circulating leptin levels in obese humans. J Clin Endocrinol Metab 90(9):5333–5335PubMedCrossRefGoogle Scholar
  11. Denroche HC, Levi J, Wideman RD, Sequeira RM, Huynh FK, Covey SD, Kieffer TJ (2011) Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes 60(5):1414–1423PubMedCentralPubMedCrossRefGoogle Scholar
  12. Denroche HC, Huynh FK, Kieffer TJ (2012) The role of leptin in glucose homeostasis. J Diabetes Investig 3(2):115–129PubMedCentralPubMedCrossRefGoogle Scholar
  13. Escobar-Morreale HF, Escobar del Rey F, Morreale de Escobar G (1997) Thyroid hormones influence serum leptin concentrations in the rat. Endocrinology 138:4485–4488PubMedCrossRefGoogle Scholar
  14. Farasat T, Cheema AM, Khan MN (2012) Hyperinsulinemia and insulin resistance is associated with low T(3)/T(4) ratio in prediabetic euthyroid Pakistani subjects. J Diabetes Complications 26(6):522–525PubMedCrossRefGoogle Scholar
  15. Flores-Morales A, Greenhalgh CJ, Norstedt G, Rico-Bautista E (2006) Negative regulation of growth hormone receptor signaling. Mol Endocrinol 20(2):241–253PubMedCrossRefGoogle Scholar
  16. Friedman JM (2009) Leptin at 14y of age: an ongoing story. Am J Clin Nutr 89(3):973S–979SPubMedCentralPubMedCrossRefGoogle Scholar
  17. Ghilardi N, Skoda RC (1997) The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line. Mol Endocrinol 11:393–399PubMedCrossRefGoogle Scholar
  18. Havel PJ, Uriu-Hare JY, Liu T, Stanhope KL, Sern JS, Keen CL, Ahren AB (1998) Marked and rapid decreases of circulating leptin in streptozotocin diabetic rats: reversal by insulin. Am J Physiol Regul Integr Comp Physiol 274(5 Pt 2):R1482–R1491Google Scholar
  19. He S, Liang XF, Li L, Huang W, Shen D, Tao YX (2013) Gene structure and expression of leptin in Chinese perch. Gen Comp Endocrinol 194:183–188PubMedCrossRefGoogle Scholar
  20. Henly DC, Hoffmann NV, Galligan PA, Morris P (1999) Inhibitory effects of leptin on glucokinase and glycolysis in primary rat hepaotocytes. Diabetes towards 2000: abstract book: the 4th international diabetes federation. Western Pacific Region, Congress, Sydney, pp 25–28Google Scholar
  21. Hollenberg AN, Forrest D (2008) The thyroid and metabolism: the action continues. Cell Metab 8(1):10–12PubMedCrossRefGoogle Scholar
  22. Huising MO, Geven EJ, Kruiswijk CP, Nabuurs SB, Stolte EH, Spanings FA, Verburg-van Kemenade BM, Flik G (2006) Increased leptin expression in common Carp (Cyprinus carpio) after food intake but not after fasting or feeding to satiation. Endocrinology 147(12):5786–5797PubMedCrossRefGoogle Scholar
  23. Hulbert AJ (2000) Thyroid hormones and their effects: a new perspective. Biol Rev Camb Philos Soc 75(4):519–631PubMedCrossRefGoogle Scholar
  24. Kapadia KB, Bhatt PA, Shah JS (2012) Association between altered thyroid state and insulin resistance. J Pharmacol Pharmacother 3(2):156–160PubMedCentralPubMedGoogle Scholar
  25. Kelesidis T, Kelesidis I, Chou S, Mantzoros CS (2010) Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med 52(2):93–100CrossRefGoogle Scholar
  26. Lafrance V, Wataru Inoue W, Kana B, Luhesh GN (2010) Leptin modulates cell morphology and cytokine release in microglia. Brain Behav Immun 24(3):358–365PubMedCrossRefGoogle Scholar
  27. Li GG, Liang XF, Xie Q, Li GZ, Yu Y, Lai K (2010) Gene structure, recombinant expression and functional characterization of grass carp leptin. Gen Comp Endocrinol 166(1):117–127PubMedCrossRefGoogle Scholar
  28. Lin CY, Higginbotham DA, Judd RL, White BD (2002) Central leptin increases insulin sensitivity in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 282(5):E1084–E1091PubMedCrossRefGoogle Scholar
  29. Liu L, Karkanias GB, Morales JC, Hawkins M, Barzilai N, Wang J, Rossetti L (1998) Intracerebroventricular leptin regulates hepatic but not peripheral glucose fluxes. J Biol Chem 273(47):31160–31167PubMedCrossRefGoogle Scholar
  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  31. Lu RH, Liang XF, Wang M, Zhou Y, Bai XL, He Y (2012) The role of leptin in lipid metabolism in fatty degenerated hepatocytes of the grass carp Ctenopharyngodon idellus. Fish Physiol Biochem 38(6):1759–1774PubMedCrossRefGoogle Scholar
  32. Luvizotto RAM, Conde SJ, Sibio MT, Nascimento AF, Lima-Leopoldo AP, Leopoldo AS, Padovani CR, Cicogna AC, Nogueira CR (2010) Administration of physiologic levels of triiodothyronine increases leptin expression in calorie-restricted obese rats, but does not influence weight loss. Metabolism 59(1):1–6PubMedCrossRefGoogle Scholar
  33. Luvizotto RAM, Sibio MT, Olimpio RMC, Nascimento AF, Lima-Leopoldo AP, Leopoldo AS, Padovani CR, Cicogna AC, Nogueira CR (2011) Supraphysiological triiodothyronine doses diminish leptin and adiponectin gene expression, but do not alter resistin expression in calorie restricted obese rats. Horm Metab Res 43(7):452–457PubMedCrossRefGoogle Scholar
  34. Medina-Gomez G, Calvo RM, Obregon MJ (2004) T3 and Triac inhibit leptin secretion and expression in brown and white rat adipocytes. Biochim Biophys Acta 1682(1–3):38–47PubMedCrossRefGoogle Scholar
  35. Mitchell SE, Ruben N, Morris A, Tovar S, Grant C, Cruickshank M, Rayner DV, Dieguez C, Williams LM (2009) Leptin receptor gene expression and number in the brain are regulated by leptin level and nutritional status. J Physiol 587(14):3573–3585PubMedCentralPubMedCrossRefGoogle Scholar
  36. Monteverdi GH, Di Giulio RT (2000) Vitellogenin association and oocytic accumulation of thyroxine and 3,5,30-triiodothyronine in gravid Fundulus heteroclitus. Gen Comp Endocrinol 120(2):198–211PubMedCrossRefGoogle Scholar
  37. Moreno M, de Lange P, Lombardi A, Silvestri E, Goglia F (2008) Metabolic effects of thyroid hormone derivatives. Thyroid 18(2):239–253PubMedCrossRefGoogle Scholar
  38. Moreno-Aliaga MJ, Stanhope KL, Gregoire FM, Warden CH, Havel PJ (2003) Effects of inhibiting transcription and protein synthesis on basal and insulin-stimulated leptin gene expression and leptin secretion in cultured rat adipocytes. Biochem Biophys Res Commun 307(4):907–914PubMedCrossRefGoogle Scholar
  39. Morton GJ, Schwartz MW (2011) Leptin and the CNS control of glucose metabolism. Physiol Rev 91(2):389–411PubMedCentralPubMedCrossRefGoogle Scholar
  40. Morton GJ, Gelling RW, Niswender KD, Morrison CD, Kim F, Schwartz MW (2005) Leptin signaling in the hypothalamic arcuate nucleus is a key determinant of glucose tolerance and hepatic insulin action. Obes Res 13(1):198–201CrossRefGoogle Scholar
  41. Panserat S, Médale F, Blin C, Brèque J, Vachot C, Plagnes-Juan E, Gomes E, Krishnamoorthy R, Kaushik S (2000) Hepaticglucokinase is induced by dietary carbohydrates in rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata). Am J Physiol 278(5):R1164–R1170Google Scholar
  42. Pocai A, Morgan K, Buettner C, Gutierrez-Juarez R, Obici S, Rossetti L (2005) Central leptin acutely reverses diet-induced hepatic insulin resistance. Diabetes 54(11):3182–3189PubMedCrossRefGoogle Scholar
  43. Power DM, Llewellyn L, Faustino M, Nowell MA, Bjornsson BT, Einarsdottir IE, Canario AV, Sweeney GE (2001) Thyroid hormones in growth and development of fish. Comp Biochem Physiol C 130(4):447–459Google Scholar
  44. Rønnestad I, Nilsen TO, Murashita K, Angotzi AR, Moen AGG, Stefansson SO, Kling P, Bjornsson BT, Kurokawa T, Ronnestad I (2010) Leptin and leptin receptor genes in Atlantic salmon: cloning, phylogeny, tissue distribution and expression correlated to long-term feeding status. Gen Comp Endocrinol 168(1):55–70PubMedCrossRefGoogle Scholar
  45. Rossetti L, Massillon D, Barzilai N, Vuguin P, Chen W, Hawkins M, Wu J, Wang J (1997) Short term effects of leptin on hepatic gluconeogenesis and in vivo insulin action. J Biol Chem 272(44):27758–27763PubMedCrossRefGoogle Scholar
  46. Schulz LC, Widmaier EP (2007) Leptin receptor. In: Castracane VD, Henson MC (eds) Leptin. Springer Science & Business Media Inc, New York, pp 11–31Google Scholar
  47. Sesmilo G, Casamitjana R, Halperin I, Gomis R, Vilardell E (1998) Role of thyroid hormones on serum leptin levels. Eur J Endocrinol 139(4):428–430PubMedCrossRefGoogle Scholar
  48. Shankaran H, Wiley HS, Resat H (2007) Receptor downregulation and desensitization enhance the information processing ability of signalling receptors. BMC Syst Biol 1:48–62PubMedCentralPubMedCrossRefGoogle Scholar
  49. Steppan CM, Crawford TD, Chidsey-Frink KL, Ke H, Swick AG (2000) Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 92(1–3):73–78PubMedCrossRefGoogle Scholar
  50. Su Q, Mumick S, Nizner P, Tota MR, Menetski J, Reitman ML, Macneil DJ (2008) Deficiency in cytosolic malic enzyme does not increase acetaminophen-induced hepato-toxicity. Basic Clin Pharmacol Toxicol 103(1):36–42CrossRefGoogle Scholar
  51. Swoap SJ (2008) The pharmacology and molecular mechanisms underlying temperature regulation and torpor. Biochem Pharmacol 76(7):817–824PubMedCentralPubMedCrossRefGoogle Scholar
  52. Terrien X, Prunet P (2013) Crossregulation of the thyroid hormone and corticosteroids in amphibians and fish: The effects of endocrine disruption. doi: 10.5772/54314
  53. Tranulis MA, Dregni O, Christophersen B, Krogdahl A, Borrebaek B (1996) A glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar). Comp Biochem Physiol B 114(1):35–39PubMedCrossRefGoogle Scholar
  54. Walker CG, Bryson JM, Bell-Anderson KS, Hancock DP, Denyer GS, Caterson ID (2005) Insulin determines leptin responses during a glucose challenge in fed and fasted rats. Int J Obes 29(4):398–405CrossRefGoogle Scholar
  55. Wendy MM, Francine MG, Kimber LS, Charles VM, Tooru MM, Craig HW, Judith SS, Peter JH (1998) Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 139(2):551–558Google Scholar
  56. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Rong-Hua Lu
    • 1
    • 2
  • Yi Zhou
    • 1
  • Xiao-Chen Yuan
    • 1
  • Xu-Fang Liang
    • 1
  • Liu Fang
    • 1
  • Xiao-Li Bai
    • 1
  • Min Wang
    • 1
  • Yu-Hua Zhao
    • 1
  1. 1.College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of AgricultureHuazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhanChina
  2. 2.College of FisheriesHenan Normal UniversityXinxiangChina

Personalised recommendations