Advertisement

Fish Physiology and Biochemistry

, Volume 41, Issue 4, pp 899–907 | Cite as

Tissue distribution of olive flounder VDAC2 and its expression in fish cell lines

  • Aijun Lü
  • Xiucai Hu
  • Li Li
  • Chao Pei
  • Chao Zhang
  • Xianglin Cao
  • Xianghui Kong
  • Guoxing Nie
  • Xuejun Li
  • Jingfeng Sun
Article

Abstract

Voltage-dependent anion channel (VDAC) is located in the mitochondrial outer membrane, which plays a crucial role in regulating cell life and death. In this study, the tissue distribution of olive flounder Paralichthys olivaceus VDAC2 (PoVDAC2) was detected by quantitative real-time PCR and Western blot analysis. The qRT-PCR results showed that the expression level of PoVDAC2 was abundant in heart, muscle and gill tissues. Western blot analysis revealed a protein of 32 kDa detected in all six tissues. Furthermore, a recombinant eukaryotic expression plasmid pEGFP-N3-PoVDAC2 was successfully constructed and transiently expressed the fusion protein in fish cell lines. Subcellular localization indicated that PoVDAC2-GFP was distributed in a punctate mitochondria-like pattern throughout the cytoplasm in flounder embryonic cells (FEC). The distribution of native VDAC2 in untransfected fish cells was also investigated by immunofluorescence microscopy. The punctate VDAC2 fluorescence signals of both FEC and EPC cells were identically observed in the cytoplasm but not in the nucleus. These results laid a foundation for investigating the functional relevance of VDAC response to pathogens in flounder.

Keywords

VDAC Olive flounder Expression Fish cell lines 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 31272692), Qinglan Project of Jiangsu Province (No. QL2014013) and Team of Provincial Science and Technology Innovation of Henan High Education (No. 15IRTSTHN018).

References

  1. Abu-Hamad S, Sivan S, Shoshan-Barmatz V (2006) The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc Natl Acad Sci 103:5787–5792PubMedCentralPubMedCrossRefGoogle Scholar
  2. Barton KN, Smith MD, McCauley RB (1996) Characterization of the VKAKV insertion sequence in yeast porin. FASEB J 10:A1117Google Scholar
  3. Buettner R, Papoutsoglou G, Scemes E, Spray DC, Dermietzel R (2000) Evidence for secretory pathway localization of a voltage-dependent anion channel isoform. Proc Natl Acad Sci USA 97:3201–3206PubMedCentralPubMedCrossRefGoogle Scholar
  4. Casadio R, Jacoboni I, Messina A, De Pinto V (2002) A 3D model of the voltage-dependent anion channel (VDAC). FEBS Lett 520:1–7PubMedCrossRefGoogle Scholar
  5. Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256–257:107–115PubMedCrossRefGoogle Scholar
  6. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249PubMedCentralPubMedCrossRefGoogle Scholar
  7. de Cesar CM, Wilson JE (2004) All three isoforms of the voltage-dependent anion channel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain. Arch Biochem Biophys 422:191–196CrossRefGoogle Scholar
  8. Doperalski NJ, Martyniuk CJ, Prucha MS, Kroll KJ, Denslow ND, Barber DS (2011) Cloning and expression of the translocator protein (18 kDa), voltage-dependent anion channel, and diazepam binding inhibitor in the gonad of largemouth bass (Micropterus salmoides) across the reproductive cycle. Gen Comp Endocrinol 173:86–95PubMedCentralPubMedCrossRefGoogle Scholar
  9. Graham BH, Craigen WJ (2005) Mitochondrial voltage-dependent anion channel gene family in Drosophila melanogaster: complex patterns of evolution, genomic organization, and developmental expression. Mol Genet Metab 85:308–317PubMedCrossRefGoogle Scholar
  10. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831PubMedCrossRefGoogle Scholar
  11. Lemasters JJ (2007) Modulation of mitochondrial membrane permeability in pathogenesis, autophagy and control of metabolism. J Gastroenterol Hepatol 22:31–37CrossRefGoogle Scholar
  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  13. Lü AJ, Dong CW, Du CS, Zhang QY (2007) Characterization and expression analysis of Paralichthys olivaceus voltage-dependent anion channel (VDAC) gene in response to virus infection. Fish Shellfish Immunol 23:601–613PubMedCrossRefGoogle Scholar
  14. Lü AJ, Hu XC, Xue J, Zhu JR, Wang Y, Zhou GZ (2012) Gene expression profiling in the skin of zebrafish infected with Citrobacter freundii. Fish Shellfish Immunol 32:273–283PubMedCrossRefGoogle Scholar
  15. Lü AJ, Hu XC, Wang Y, Shen XJ, Li X, Zhu AH, Tian J, Ming QL, Feng ZJ (2014) iTRAQ analysis of gill proteins from the zebrafish (Danio rerio) infected with Aeromonas hydrophila. Fish Shellfish Immunol 36:229–239PubMedCrossRefGoogle Scholar
  16. Massa R, Marliera LN, Martorana A, Cicconi S, Pierucci D, Giacomini P, De Pinto V, Castellani L (2000) Intracellular localization and isoform expression of the voltage-dependent anion channel (VDAC) in normal and dystrophic skeletal muscle. J Muscle Res Cell Motil 21:433–442PubMedCrossRefGoogle Scholar
  17. Premkumar A, Simantov R (2002) Mitochondrial voltage-dependent anion channel is involved in dopamine-induced apoptosis. J Neurochem 82:345–352PubMedCrossRefGoogle Scholar
  18. Rostovtseva TK, Bezrukov SM (2008a) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40:163–170PubMedCentralPubMedCrossRefGoogle Scholar
  19. Rostovtseva TK, Bezrukov SM (2008b) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40:163–170PubMedCentralPubMedCrossRefGoogle Scholar
  20. Rostovtseva TK, Tan W, Colombini M (2005) On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr 37:129–142PubMedCrossRefGoogle Scholar
  21. Sampson MJ, Lovell RS, Davison DB, Craigen WJ (1996) A novel mouse mitochondrial voltage-dependent anion channel gene localizes to chromosome 8. Genomics 36:192–196PubMedCrossRefGoogle Scholar
  22. Sampson MJ, Decker WK, Beaudet AL, Ruitenbeek W, Armstrong D, Hicks MJ, Craigen WJ (2001) Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem 276:39206–39212PubMedCrossRefGoogle Scholar
  23. Schwertz H, Carter JM, Abdudureheman M, Russ M, Buerke U, Schlitt A, Müller-Werdan U, Prondzinsky R, Werdan K, Buerke M (2007) Myocardial ischemia/reperfusion causes VDAC phosphorylation which is reduced by cardioprotection with a p38 MAP kinase inhibitor. Proteomics 7:4579–4588PubMedCrossRefGoogle Scholar
  24. Shen X, Wang T, Xu D, Lu L (2014) Proteomic identification, characterization and expression analysis of Ctenopharyngodon idella VDAC1 upregulated by grass carp reovirus infection. Fish Shellfish Immunol 37:96–107PubMedCrossRefGoogle Scholar
  25. Shirakata Y, Koike K (2003) Hepatitis B virus × protein induces cell death by causing loss of mitochondrial membrane potential. J Biol Chem 278:22071–22078PubMedCrossRefGoogle Scholar
  26. Shoshan-Barmatz V, Ben-Hail D (2012) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12:24–34PubMedCrossRefGoogle Scholar
  27. Shoshan-Barmatz V, Mizrachi D (2012) VDAC1: from structure to cancer therapy. Front Oncol 2:164PubMedCentralPubMedCrossRefGoogle Scholar
  28. Shoshan-Barmatz V, Keinan N, Zaid H (2008) Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr 40:183–191PubMedCrossRefGoogle Scholar
  29. Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285PubMedCrossRefGoogle Scholar
  30. Tine M, McKenzie DJ, Bonhomme F, Durand J-D (2011) Salinity-related variation in gene expression in wild populations of the black-chinned tilapia from various West African coastal marine, estuarine and freshwater habitats. Estuar Coast Shelf Sci 91:102–109CrossRefGoogle Scholar
  31. Turko IV, Murad F (2003) Quantitative protein profiling in heart mitochondria from diabetic rats. J Biol Chem 278:35844–35849PubMedCrossRefGoogle Scholar
  32. Vyssokikh MY, Brdiczka D (2003) The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim Pol 50:389–404PubMedGoogle Scholar
  33. Wang KC, Kondo H, Hirono I, Aoki T (2010) The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish Shellfish Immunol 29:94–103PubMedCrossRefGoogle Scholar
  34. Wu S, Sampson MJ, Decker WK, Craigen WJ (1999) Each mammalian mitochondrial outer membrane porin protein is dispensable: effects on cellular respiration. Biochim Biophys Acta 1452:68–78PubMedCrossRefGoogle Scholar
  35. Young MJ, Bay DC, Hausner G, Court DA (2007) The evolutionary history of mitochondrial porins. BMC Evol Biol 7:31PubMedCentralPubMedCrossRefGoogle Scholar
  36. Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V (2005) The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12:751–760PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Aijun Lü
    • 1
    • 2
  • Xiucai Hu
    • 2
  • Li Li
    • 1
  • Chao Pei
    • 1
  • Chao Zhang
    • 1
  • Xianglin Cao
    • 1
  • Xianghui Kong
    • 1
  • Guoxing Nie
    • 1
  • Xuejun Li
    • 1
  • Jingfeng Sun
    • 3
  1. 1.College of FisheriesHenan Normal UniversityXinxiangChina
  2. 2.School of Life SciencesJiangsu Normal UniversityXuzhouChina
  3. 3.College of FisheriesTianjin Agricultural UniversityTianjinChina

Personalised recommendations