Skip to main content
Log in

Induction of DNA base damage and strand breaks in peripheral erythrocytes and the underlying mechanism in goldfish (Carassius auratus) exposed to monocrotophos

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Using goldfish (Carassius auratus) as the model animal, the present study revealed the types of the DNA damage induced by monocrotophos, a highly toxic organophosphorus pesticide, and explored the mechanism underlying the DNA-damaging effect of this pesticide. Results of the alkaline comet assay showed that global DNA damage (including single- and double-strand breaks and alkali-labile sites) in peripheral erythrocytes of goldfish, measured as olive tail moment, was significantly increased by exposure to 0.01, 0.10, and 1.00 mg/L monocrotophos for 24, 48, 96, and 168 h. In particular, alkali-labile sites rather than single- or double-strand breaks, distinguished by the alkaline, pH 12.1, and neutral comet assays, were mainly induced by monocrotophos at 48 h. Oxidative damage in DNA bases and telomeric DNA was investigated by using the alkaline comet assay combined with endonuclease III or formamidopyrimidine DNA glycosylase and with fluorescence in situ hybridization, respectively. Further, glutathione peroxidase activity significantly decreased at 24 h but increased at 96 and 168 h, and malondialdehyde concentrations significantly increased at 48 h but gradually decreased at 96 and 168 h, which indicated an over-production of reactive oxygen species (ROS) at short exposure durations, but effective scavenging at long exposure durations in the peripheral blood tissues. Accordingly, our results suggest that DNA damage induced by monocrotophos in fish blood cells is possibly due to the inhibition of ROS scavenging and resulted accumulation of ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

SSB:

Single-strand breaks

DSB:

Double-strand breaks

ALS:

Alkali-labile sites

OP:

Organophosphate

CYPs:

Cytochrome P450s

O2 :

Oxygen

\({\text{O}}_{ 2}^{\cdot - }\) :

Superoxide anion

\(^{ \cdot } {\text{OH}}\) :

Hydroxyl radicals

SOD:

Superoxide dismutase

GSH-Px:

Glutathione peroxidase

Endo III:

Endonuclease III

FPG:

Formamidopyrimidine DNA glycosylase

FISH:

Fluorescence in situ hybridization

MDA:

Malondialdehyde

PBS:

Phosphate-buffered saline

OTM:

Olive tail moment

SSC:

Saline sodium citrate

Hb:

Hemoglobin

AP sites:

Apurinic or apyrimidinic sites

H2O2 :

Hydrogen peroxide

References

  • Ali D, Kumar S (2008) Long-term genotoxic effect of monocrotophos in different tissues of freshwater fish Channa punctatus (Bloch) using alkaline single cell gel electrophoresis. Sci Total Environ 405:345–350

    Article  CAS  PubMed  Google Scholar 

  • Anjum R, Malik A (2013) Evaluation of mutagenicity of wastewater in the vicinity of pesticide industry. Environ Toxicol Pharmacol 35:284–291

    Article  CAS  PubMed  Google Scholar 

  • Arifin M, Roxas NP, Tejada AW, Penalba FF, Sevilla CC, Sajise PE (1997) Repeated oral dose of monocrotophos in goats: its bioaccumulation. Philippine Agriculturist (Philippines)

  • Arutyunyan R, Gebhart E, Hovhannisyan G, Greulich KO, Rapp A (2004) Comet-FISH using peptide nucleic acid probes detects telomeric repeats in DNA damaged by bleomycin and mitomycin C proportional to general DNA damage. Mutagenesis 19:403–408

    Article  CAS  PubMed  Google Scholar 

  • Arutyunyan R, Rapp A, Greulich KO, Hovhannisyan G, Haroutiunian S, Gebhart E (2005) Fragility of telomeres after bleomycin and cisplatin combined treatment measured in human leukocytes with the Comet-FISH technique. Exp Oncol 27:38–42

    CAS  PubMed  Google Scholar 

  • Avery EH, Lee BL, Freedland RA, Cornelius CE (1992) Bile pigments in gallbladder and freshly-secreted hepatic duct bile from fed and fasted rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol Comp Physiol 101:857–861

    Article  CAS  PubMed  Google Scholar 

  • Bagchi D, Bagchi M, Hassoun EA, Stohs SJ (1995) In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 104:129–140

    Article  CAS  PubMed  Google Scholar 

  • Betancor MB, Caballero MJ, Terova G, Corà S, Saleh R, Benítez-Santana T, Bell JG, Hernández-Cruz CM, Izquierdo M (2012) Vitamin C enhances vitamin E status and reduces oxidative stress indicators in sea bass larvae fed high DHA microdiets. Lipids 47:1193–1207

    Article  CAS  PubMed  Google Scholar 

  • Bondy SC, Naderi S (1994) Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochem Pharmacol 48:155–159

    Article  CAS  PubMed  Google Scholar 

  • Çavaş T, Könen S (2007) Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 22:263–268

    Article  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Cortés-Gutiérrez EI, Hernández-Garza F, García-Pérez JO, Dávila-Rodríguez MI, Aguado-Barrera ME, Cerda-Flores RM (2012) Evaluation of DNA single and double strand breaks in women with cervical neoplasia based on alkaline and neutral comet assay techniques. Biomed Res Int. doi:10.1155/2012/385245

    Google Scholar 

  • Cortés-Gutiérrez EI, Dávila-Rodríguez MI, López-Fernández C, Fernández JL, Crespo F, Gosálvez J (2014) Localization of alkali-labile sites in donkey (Equus asinus) and stallion (Equus caballus) spermatozoa. Theriogenology 81:321–325

    Article  PubMed  Google Scholar 

  • Dinnen RD, Tomlinson SM, Hart D, Chopra C, Heddle JA (1988) Application of a micronucleus assay to the peripheral blood cells of rainbow trout, Salmo gairdneri. Can Tech Rep Fish Aquat Sci 1607:69–78

    Google Scholar 

  • Dwivedi N, Flora SJ (2011) Concomitant exposure to arsenic and organophosphates on tissue oxidative stress in rats. Food Chem Toxicol 49:1152–1159

    Article  CAS  PubMed  Google Scholar 

  • Einaudi L, Courbiere B, Tassistro V, Prevot C, Sari-Minodier I, Orsiere T, Perrin J (2014) In vivo exposure to benzo (a) pyrene induces significant DNA damage in mouse oocytes and cumulus cells. Hum Reprod 29:548–554

    Article  CAS  PubMed  Google Scholar 

  • Fischer U, Ototake M, Nakanishi T (1998) Life span of circulating blood cells in ginbuna crucian carp (Carassius auratus langsdorfii). Fish Shellfish Immun 8:339–349

    Article  Google Scholar 

  • Gisselsson D, Jonson T, Petersén A, Strömbeck B, Dal Cin P, Höglund M, Mitelman F, Mertens F, Mandahl N (2001) Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 98:12683–12688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenberg MM (2014) Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome catalyzed reactions. Acc Chem Res 47:646–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horváthová E, Slameňová D, Hlinčíková L, Mandal TK, Gábelová A, Collins AR (1998) The nature and origin of DNA single-strand breaks determined with the comet assay. Mutat Res DNA Repair 409:163–171

    Article  PubMed  Google Scholar 

  • Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  CAS  PubMed  Google Scholar 

  • Jamil K, Shaik AP, Mahboob M, Krishna D (2004) Effect of organophosphorus and organochlorine pesticides (monochrotophos, chlorpyriphos, dimethoate, and endosulfan) on human lymphocytes in-vitro. Drug Chem Toxicol 27:133–144

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Hwang BJ, Chang PW, Toth EA, Lu AL (2014) Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast. DNA Repair (Amst) 15:1–10

    Article  CAS  Google Scholar 

  • Kashyap MP, Singh AK, Kumar V, Tripathi VK, Srivastava RK, Agrawal M, Khanna VK, Yadav S, Jain SK, Pant AB (2011) Monocrotophos induced apoptosis in PC12 cells: role of xenobiotic metabolizing cytochrome P450s. PLoS ONE 6:e17757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Biade S, Matsumoto Y (1998) Involvement of flap endonuclease 1 in base excision DNA repair. J Biol Chem 273:8842–8848

    Article  CAS  PubMed  Google Scholar 

  • Końca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Góźdź S, Koza Z, Wojcik A (2003) A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res 534:15–20

    Article  PubMed  Google Scholar 

  • Kovacic P (2003) Mechanism of organophosphates (nerve gases and pesticides) and antidotes: electron transfer and oxidative stress. Curr Med Chem 10:2705–2709

    Article  CAS  PubMed  Google Scholar 

  • Krause KH, van Thriel C, De Sousa PA, Leist M, Hengstler JG (2013) Monocrotophos in Gandaman village: India school lunch deaths and need for improved toxicity testing. Arch Toxicol 87:1877–1881

    Article  CAS  PubMed  Google Scholar 

  • Kumari B, Madan VK, Kathpal TS (2007) Pesticide residues in rain water from Hisar, India. Environ Monit Assess 133:467–471

    Article  CAS  PubMed  Google Scholar 

  • Lu XT, Ma Y, Wang C, Zhang XF, Jin DQ, Huang CJ (2012) Cytotoxicity and DNA damage of five organophosphorus pesticides mediated by oxidative stress in PC12 cells and protection by vitamin E. J Environ Sci Health B 47:445–454

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Westmoreland JW, Gordenin DA, Resnick MA (2011) Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease. PLoS Genet. doi:10.1371/journal.pgen.1002059

    Google Scholar 

  • Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1:441–445

    CAS  PubMed  Google Scholar 

  • Mahboob M, Rahman MF, Danadevi K, Banu BS, Grover P (2002) Detection of DNA damage in mouse peripheral blood leukocytes by the comet assay after oral administration of monocrotophos. Drug Chem Toxicol 25:65–74

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL, Fan J, Danzy S, Wilson DM III, Bohr VA (2005) Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 33:1230–1239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pampalona J, Soler D, Genescà A, Tusell L (2010) Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies. Mutat Res 683:16–22

    Article  CAS  PubMed  Google Scholar 

  • Poletta GL, Gigena F, Loteste A, Parma MJ, Kleinsorge EC, Simoniello MF (2013) Comet assay in gill cells of Prochilodus lineatus exposed in vivo to cypermethrin. Pestic Biochem Physiol 107:385–390

    Article  CAS  PubMed  Google Scholar 

  • Ribas-Maynou J, Garcia-Peiro A, Abad C, Amengual MJ, Navarro J, Benet J (2012) Alkaline and neutral Comet assay profiles of sperm DNA damage in clinical groups. Hum Reprod 27(3):652–658

    Article  CAS  PubMed  Google Scholar 

  • Ribas-Maynou J, Fernández-Encinas A, García-Peiró A, Prada E, Abad C, Amengual MJ, Navarro J, Benet J (2014) Human semen cryopreservation: a sperm DNA fragmentation study with alkaline and neutral Comet assay. Andrology 2:83–87

    Article  CAS  PubMed  Google Scholar 

  • Saleha Banu B, Danadevi K, Rahman MF, Ahuja YR, Kaiser J (2001) Genotoxic effect of monocrotophos to sentinel species using comet assay. Food Chem Toxicol 39:361–366

    Article  CAS  PubMed  Google Scholar 

  • Santos R, Palos-Ladeiro M, Besnard A, Reggio J, Vulliet E, Porcher JM, Bony S, Sanchez W, Devaux A (2013) Parental exposure to methyl methane sulfonate of three-spined stickleback: contribution of DNA damage in male and female germ cells to further development impairment in progeny. Ecotoxicology 22:815–824

    Article  CAS  PubMed  Google Scholar 

  • Schlörmann W, Glei M (2009) Comet fluorescence in situ hybridization (Comet-FISH): detection of DNA damage. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5220

    PubMed  Google Scholar 

  • Shahidi M, Mozdarani H, Bryant PE (2007) Radiation sensitivity of leukocytes from healthy individuals and breast cancer patients as measured by the alkaline and neutral comet assay. Cancer Lett 257:263–273

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  • Swarnam TP, Velmurugan A (2013) Pesticide residues in vegetable samples from the Andaman Islands, India. Environ Monit Assess 185:6119–6127

    Article  CAS  PubMed  Google Scholar 

  • Tariq MI, Afzal S, Hussain I (2004) Pesticides in shallow groundwater of bahawalnagar, Muzafargarh, DG Khan and Rajan Pur districts of Punjab, Pakistan. Environ Int 30:471–479

    Article  CAS  PubMed  Google Scholar 

  • Thorne D, Wilson J, Kumaravel TS, Massey ED, McEwan M (2009) Measurement of oxidative DNA damage induced by mainstream cigarette smoke in cultured NCI-H292 human pulmonary carcinoma cells. Mutat Res 673:3–8

    Article  CAS  PubMed  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  • Vamvakas S, Vock EH, Lutz WK (1997) On the role of DNA double-strand breaks in toxicity and carcinogenesis. CRC Crit Rev Toxicol 27:155–174

    Article  CAS  Google Scholar 

  • von Zglinicki T, Martin-Ruiz CM, Saretzki G (2005) Telomeres, cell senescence and human ageing. Signal Transduct 5:103–114

    Article  Google Scholar 

  • Wang Z, Rhee DB, Lu J, Bohr CT, Zhou F, Vallabhaneni H, de Souza-Pinto NC, Liu Y (2010) Characterization of oxidative guanine damage and repair in mammalian telomeres. PLoS Genet 6:e1000951

    Article  PubMed Central  PubMed  Google Scholar 

  • Wen Y, Zhang PP, An J, Yu YX, Wu MH, Sheng GY, Fu JM, Zhang XY (2011) Diepoxybutane induces the formation of DNA–DNA rather than DNA–protein cross-links, and single-strand breaks and alkali-labile sites in human hepatocyte L02 cells. Mutat Res Fund Mol M 716:84–91

    Article  CAS  Google Scholar 

  • Yu F, Wang Z, Ju B, Wang Y, Wang J, Bai D (2008) Apoptotic effect of organophosphorus insecticide chlorpyrifos on mouse retina in vivo via oxidative stress and protection of combination of vitamins C and E. Exp Toxicol Pathol 59:415–423

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Tian H, Wang W, Ru S (2013) Exposure to monocrotophos pesticide causes disruption of the hypothalamic-pituitary-thyroid axis in adult male goldfish (Carassius auratus). Gen Comp Endocrinol 193:158–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [30671618].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoguo Ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Wang, B., Zhang, X. et al. Induction of DNA base damage and strand breaks in peripheral erythrocytes and the underlying mechanism in goldfish (Carassius auratus) exposed to monocrotophos. Fish Physiol Biochem 41, 613–624 (2015). https://doi.org/10.1007/s10695-015-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0032-2

Keywords

Navigation