Fish Physiology and Biochemistry

, Volume 41, Issue 2, pp 509–532 | Cite as

Molecular cloning, sequencing and phylogeny of vasotocin receptor genes in the air-breathing catfish Heteropneustes fossilis with sex dimorphic and seasonal variations in tissue expression

  • Arpana Rawat
  • Radha Chaube
  • Keerikkattil P. Joy


Vasotocin (VT) is the ortholog of vasopressin (VP) in non-mammalian vertebrates and is known for multiple functions. Teleost fishes have a complete repertoire of known VP/VT receptor subtypes (vasopressin type, VR): two V1A subtypes (V1Aa and V1Ab or V1a1 and V1a2) and five V2 subtypes (V2A1, V1A2, V2B1, V2B2 and V2C). Full-length cDNAs of v1a1, v1a2 and v2 (v2a1) with ORFs of 1,308, 1,137 and 1,527 bp, respectively, were cloned and characterized in the catfish Heteropneustes fossilis (Siluriformes, Ostariophysi). BLAST analysis revealed that the genes encoded three VT receptors, V1a1, V1a2 and V2 of 436, 379 and 509 amino acid residues, respectively. The predicted proteins showed typical features of the seven-transmembrane domain receptor core structure with hallmark triplets Asp-Arg-Tyr/Asp-Arg-His (DRY/DRH) and the variable intracellular loop III of vertebrate neurohypophysial hormone receptors. Phylogenetic analysis of the deduced protein sequences revealed that they clustered with the V1Aa, V1Ab and V2A1, respectively, of other teleosts. The V2R has a sequence identity of 70–76 % with V2A1 than with the V2B type (sequence identity 43–49 %). Semiquantitative PCR analysis showed that the receptor gene transcripts were expressed ubiquitously in the tissues examined (brain, pituitary, gonads, liver, muscle, kidney and gills) and displayed sex and seasonal fluctuations in a tissue-specific manner. The results form a basis for functional studies on the VT receptors in the catfish.


Catfish Phylogeny Sex and seasonal expression Vasotocin receptor genes 



This work was supported by a research grant of Department of Science and Technology, New Delhi (Grant No. SA/SO/AS-43/2009) to K. P. Joy (Principal Investigator) and Radha Chaube (Co-Investigator), which is gratefully acknowledged.

Supplementary material

10695_2015_26_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)
10695_2015_26_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 20 kb)
10695_2015_26_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 13 kb)
10695_2015_26_MOESM4_ESM.tif (4.7 mb)
Supplementary material 4 (TIFF 4795 kb)
10695_2015_26_MOESM5_ESM.tif (4.5 mb)
Supplementary material 5 (TIFF 4572 kb)
10695_2015_26_MOESM6_ESM.tif (4.8 mb)
Supplementary material 6 (TIFF 4936 kb)


  1. Acharjee S, Do-Rego JL, Oh DY, Moon SJ, Ahn RS, Lee K, Bai GD, Vaudry H, Kwon HB, Seong JY (2004) Molecular cloning, pharmacological characterization, and histochemical distribution of frog vasotocin and mesotocin receptors. J Mol Endocrinol 33:293–313CrossRefPubMedGoogle Scholar
  2. Acharjee A, Chaube R, Joy KP, Cerda J (2011) Hormonal regulation of aquaporin-1ab in Heteropneustes fossilis oocytes in vitro. Indian J Sci Tech 4:165–166Google Scholar
  3. An KW, Kim NN, Choi ECY (2008) Cloning and expression of aquaporin 1 and arginine vasotocin receptor mRNA from the black porgy, Acanthopagrus schlegeli: effect of freshwater acclimation. Fish Physiol Biochem 34:185–194CrossRefPubMedGoogle Scholar
  4. Baeyens DA, Cornett LE (2006) The cloned avian neurohypophysial hormone receptors. Comp Biochem Physiol B 143:12–19CrossRefPubMedGoogle Scholar
  5. Balment RJ, Warne JM, Tierney M, Hazon N (1993) Arginine vasotocin and fish osmoregulation. Fish Physiol Biochem 11:189–194CrossRefPubMedGoogle Scholar
  6. Balment RJ, Lu W, Weybourne E, Warne JM (2006) Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. Gen Comp Endocrinol 147:9–16CrossRefPubMedGoogle Scholar
  7. Barberis C, Mouillac B, Durroux T (1998) Structural bases of vasopressin/oxytocin receptor function. J Endocrinol 156:223–229CrossRefPubMedGoogle Scholar
  8. Bellot G, Granier S, Bourguet W, Seyer R, Rahmeh R, Mouillac B, Pascal R, Mendre C, Déméné H (2009) Structure of the third intracellular loop of the vasopressin V2 receptor and conformational changes upon binding to gC1qR. J Mol Biol 388:491–507CrossRefPubMedGoogle Scholar
  9. Bennett MB, Rankin JC (1986) The effect of neurohypophysial hormones on the vascular resistance of the isolated perfused gill of the European eel Anguilla anguilla. Gen Comp Endocrinol 64:60–66CrossRefPubMedGoogle Scholar
  10. Birnbaumer M (2000) Vasopressin receptors. TEM 11:406–410PubMedGoogle Scholar
  11. Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:345–350CrossRefGoogle Scholar
  12. Böselt I, Römpler H, Hermsdorf T, Thor D, Busch W, Schulz A, Schöneberg T (2009) Involvement of the V2 vasopressin receptor in adaptation to limited water supply. PLoS ONE 4:e5573. doi: 10.1371/journal.pone.0005573 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Chaube R, Chauvigne F, Sequeira TA, Joy KP, Acharjee A, Singh V, Cerda J (2011) Molecular and functional characterization of catfish (Heteropneustes fossilis) aquaporin-1b: changes in expression during ovarian development and hormone-induced follicular maturation. Gen Comp Endocrinol 170:162–171CrossRefPubMedGoogle Scholar
  14. Cho HJ, Acharjee S, Moon MJ, Oh DY, Vaudry H, Kwon HB, Seong JY (2007) Molecular evolution of neuropeptide receptors with regard to maintaining high affinity to their authentic ligands. Gen Comp Endocrinol 153:98–107CrossRefPubMedGoogle Scholar
  15. Claros MG, von Heijne G (1994) TopPred II: improved software for membrane protein structure predictions. Cabios Appl Notes 6:685–686Google Scholar
  16. Conklin DJ, Chavas A, Duff DW, Weaver L Jr, Zhang Y, Olson KR (1997) Cardiovascular effects of arginine vasotocin in the rainbow trout (Oncorhynchus mykiss). J Exp Biol 200:2821–2832PubMedGoogle Scholar
  17. Conklin DJ, Smith MP, Olson KR (1999) Pharmacological characterization of arginine vasotocin vascular smooth muscle receptors in the trout (Oncorhynchus mykiss) in vitro. Gen Comp Endocrinol 114:36–46CrossRefPubMedGoogle Scholar
  18. Cornett LE, Kirby JD, Vizcarra JA, Ellison JC, Thrash J, Mayeux PR, Crew MD, Jones SM, Ali N, Baeyens DA (2003) Molecular cloning and functional characterization of a vasotocin receptor subtype expressed in the pituitary gland of the domestic chicken (Gallus domesticus): avian homolog of the mammalian V1b-vasopressin receptor. Regul Pept 110:231–239CrossRefPubMedGoogle Scholar
  19. de Keyzer Y, Lenne F, Auzan C, Jegou S, Rene P, Vaudry H, Khun JM, Luton JP, Clauser E, Bertagna X (1996) The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome. J Clin Invest 97:1311–1318CrossRefPubMedCentralPubMedGoogle Scholar
  20. Erlenbach I, Wess J (1998) Molecular basis of V2 vasopressin receptor/Gs coupling selectivity. J Biol Chem 273:26549–26558CrossRefPubMedGoogle Scholar
  21. Foran CM, Bass AH (1999) Preoptic GnRH and AVT: axes for sexual plasticity in teleost fish. Gen Comp Endocrinol 116:141–152CrossRefPubMedGoogle Scholar
  22. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002CrossRefPubMedCentralPubMedGoogle Scholar
  23. Fryer J, Leung E (1982) Neurohypophyseal hormonal control of cortisol secretion in the teleost, Carassius auratus. Gen Comp Endocrinol 48:425–431CrossRefPubMedGoogle Scholar
  24. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81:629–683PubMedGoogle Scholar
  25. Goodson JL, Bass A (2001) Social behaviour functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res Rev 35:246–265CrossRefPubMedGoogle Scholar
  26. Groves DJ, Batten TFC (1986) Direct control of the gonadotroph in a teleost Poecilia latipinna. II. Neurohormones and neurotransmitters. Gen Comp Endocrinol 62:315–326CrossRefPubMedGoogle Scholar
  27. Gubrij KI, Chaturvedi CM, Ali N, Cornett LE, Kirby JD, Wilkerson J, Mikhailova M, Turner ML, Baeyens DA (2005) Molecular cloning of an oxytocin-like receptor expressed in the chicken shell gland. Comp Biochem Physiol B 142:37–45CrossRefPubMedGoogle Scholar
  28. Guibbolini ME, Lahlou B (1987) Neurohypophyseal peptide inhibition of adenylate cyclase activity in fish gills: effects of environmental salinity. FEBS Lett 220:98–102CrossRefGoogle Scholar
  29. Guibbolini ME, Avella M (2003) Neurohypophysial hormone regulation of Cl secretion: physiological evidence for V1-type receptors in sea bass gill respiratory cells in culture. J Endocrinol 176:111–119CrossRefPubMedGoogle Scholar
  30. Guibbolini ME, Pierson PM, Lahlou B (2000) Neurohypophysial hormone receptors and second messengers in trout hepatocytes. J Endocrinol 167:137–144CrossRefPubMedGoogle Scholar
  31. Haruta K, Yamashita T, Kawashima S (1991) Changes in arginine vasotocin content in the pituitary of the medaka (Oryzias latipes) during osmotic stress. Gen Comp Endocrinol 83:327–336CrossRefPubMedGoogle Scholar
  32. Hasunuma I, Sakai T, Nakada T, Toyoda F, Namiki H, Kikuyama S (2007) Molecular cloning of three types of arginine vasotocin receptor in the newt, Cynops pyrrhogaster. Gen Comp Endocrinol 151:252–258CrossRefPubMedGoogle Scholar
  33. Hausmann H, Richters A, Kreienkamp HJ, Meyerhof W, Mattes H, Lederis K, Zwiers H, Richter D (1996) Mutational analysis and molecular modeling of the nonapeptide hormone binding domains of the [Arg8] vasotocin receptor. Proc Natl Acad Sci USA 93:6907–6912CrossRefPubMedCentralPubMedGoogle Scholar
  34. Iwasaki K, Taguchi M, Bonkowsky JL, Kuwada JY (2013) Expression of arginine vasotocin receptors in the developing zebrafish CNS. Gene Expr 13:335–342CrossRefGoogle Scholar
  35. Janssens PA, Lowrey P (1987) Hormonal regulation of hepatic glycogenolysis in the carp, Cyprinus carpio. Am J Physiol Regul Integr Comp Physiol 252:653–660Google Scholar
  36. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. CABIOS 8:275–282PubMedGoogle Scholar
  37. Joy KP, Singh V (2013) Functional interactions between vasotocin and prostaglandins during final oocyte maturation and ovulation in the catfish Heteropneustes fossilis. Gen Comp Endocrinol 186:126–135CrossRefPubMedGoogle Scholar
  38. Kline JR, O’Connell AL, Hofmann AH, Holt JG, Khan AI (2011) The distribution of an AVT V1a receptor in the brain of a sex changing fish Epinephelus adscensionis. J Chem Neuroanat 42:72–88CrossRefPubMedGoogle Scholar
  39. Kohno S, Kamishima Y, Iguchi T (2003) Molecular cloning of an anuran V(2) type [Arg(8)] vasotocin receptor and mesotocin receptor: functional characterization and tissue expression in the Japanese tree frog (Hyla japonica). Gen Comp Endocrinol 132:485–498CrossRefPubMedGoogle Scholar
  40. Konno N, Hyodo S, Yamaguchi Y, Kaiya H, Miyazato M, Matsuda K, Uchiyama M (2009) African lungfish, Protopterus annectens, possess an arginine vasotocin receptor homologous to the tetrapod V2-type receptor. J Exp Biol 212:2183–2193CrossRefPubMedGoogle Scholar
  41. Konno N, Kurosawa M, Kaiya H, Miyazato M, Matsuda K, Uchiyama M (2010) Molecular cloning and characterization of a V2-type receptor in two ray-finned fish, gray bichir, Polypterus senegalus and medaka Oryzias latipes. Peptides 3:1273–1279CrossRefGoogle Scholar
  42. Kuenzel WJ, Kang SW, Jurkevich A (2013) Neuroendocrine regulation of stress in birds with an emphasis on vasotocin receptors (VTRs). Gen Comp Endocrinol 190:18–23CrossRefPubMedGoogle Scholar
  43. Kulczykowska E (2001) Responses of circulating arginine vasotocin, isotocin, and melatonin to osmotic and disturbance stress in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 24:201–206CrossRefGoogle Scholar
  44. Lagman D, Ocampo Daza D, Widmark J, Abalo XM, Sundström G, Larhammar D (2013) The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications. BMC Evo Biol 13:238CrossRefGoogle Scholar
  45. Le Mevel JC, Pamantung TF, Mabin D (1993) Effects of control and peripheral administration of arginine vasotocin and related neuropeptide on blood pressure and heart rate in the conscious trout. Brain Res 610:82–89CrossRefPubMedGoogle Scholar
  46. Lema SC (2010) Identification of multiple vasotocin receptor cDNAs in teleost fish: sequences, phylogenetic analysis, sites of expression, and regulation in the hypothalamus and gill in response to hyperosmotic challenge. Mol Cell Endocrinol 321:215–230CrossRefPubMedGoogle Scholar
  47. Lema SC, Slane MA, Salvesen KE, Godwin J (2012) Variation in gene transcript profiles of two V1a-type arginine vasotocin receptors among sexual phases of bluehead wrasse (Thalassoma bifasciatum). Gen Comp Endocrinol 179:451–464CrossRefPubMedGoogle Scholar
  48. Liu J, Wess J (1996) Different single receptor domains determine the distinct G-protein coupling profiles of members of the vasopressin receptor family. J Biol Chem 271:8772–8778CrossRefPubMedGoogle Scholar
  49. Lolait SJ, O’Carrol AM, McBride OW, Konig M, Morel A, Brownstein MJ (1992) Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357:336–339CrossRefPubMedGoogle Scholar
  50. Mahlmann S, Meyerhof W, Hausmann H, Heierhorst J, Schönrock C, Zwiers H, Lederis K, Richter D (1994) Structure, function, and phylogeny of [Arg8] vasotocin receptors from teleost fish and toad. Proc Natl Acad Sci USA 91:1342–1345CrossRefPubMedCentralPubMedGoogle Scholar
  51. Martos-Sitcha JA, Wunderink YS, Gozdowska M, Kulczykowska E, Mancera JM, Martínez-Rodríguez G (2013) Vasotocinergic and isotocinergic systems in the gilthead sea bream (Sparus aurata): an osmoregulatory story. Comp Biochem Physiol A 166:571–581CrossRefGoogle Scholar
  52. Martos-Sitcha JA, Fuentes J, Mancera JM, Martínez-Rodríguez G (2014) Variations in the expression of vasotocin and isotocin receptor genes in the gilthead sea bream Sparus aurata during different osmotic challenges. Gen Comp Endocrinol 197:5–17CrossRefPubMedGoogle Scholar
  53. McCormick SD, Bradshaw D (2006) Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol 147:3–8CrossRefPubMedGoogle Scholar
  54. Moon TW, Mommsen TP (1990) Vasoactive peptides and phenylephrine actions in isolated teleost hepatocytes. Am J Physiol Endocrinol Metab 259:E644–E649Google Scholar
  55. Morel A, O’Carroll AM, Brownstein MJ, Lolait SJ (1992) Molecular cloning and expression of rat V1a arginine vasopressin receptor. Nature 356:523–526CrossRefPubMedGoogle Scholar
  56. Ocampo Daza D, Lewicka M, Larhammar D (2012) The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, including two distinct V2 subtypes. Gen Comp Endocrinol 175:135–143CrossRefPubMedGoogle Scholar
  57. Olivereau M, Olivereau JM (1999a) Prolactin, ACTH and growth hormone-secreting cells in the teleost pituitary gland: environmental and hypothalamic control. In: Joy KP, Krishna K, Haldar C (eds) Comparative endocrinology and reproduction. Narosa/Springer, New Delhi, Heidlberg, pp 69–92Google Scholar
  58. Olivereau JM, Olivereau M (1999b) The intermediate lobe of teleost fish: POMC-MSH and somatolactin functions, environmental control and enigma. In: Joy KP, Krishna K, Haldar C (eds) Comparative endocrinology and reproduction. Narosa/Springer-Verlag, New Delhi/Heidlberg, pp 93–112Google Scholar
  59. Parwez I, Goswami SV (1985) Effects of prolactin, adrenocorticotrophin, neurohypophysial peptides, cortisol, and androgens on some osmoregulatory parameters of the hypophysectomized catfish, Heteropneustes fossilis (Bloch). Gen Comp Endocrinol 58:51–68CrossRefPubMedGoogle Scholar
  60. Parwez I, Goswami SV, Sundararaj BI (1984) Effects of hypophysectomy on some osmoregulatory parameters of the catfish, Heteropneustes fossilis (Bloch). J Exp Zool 229:375–381CrossRefPubMedGoogle Scholar
  61. Perrott MN, Carrick S, Balment RJ (1991) Pituitary and plasma arginine vasotocin levels in teleost fish. Gen Comp Endocrinol 83:68–74CrossRefPubMedGoogle Scholar
  62. Perrott MN, Sainsbury RJ, Balment RJ (1993) Peptide hormone stimulated second messenger production in the teleostean nephron. Gen Comp Endocrinol 89:387–395CrossRefPubMedGoogle Scholar
  63. Pierson PM, Guibbolini ME, Lahlou B (1996) A V1-type receptor for mediating the neurohypophysial hormone-induced ACTH release in trout pituitary. J Endocrinol 149:109–115CrossRefPubMedGoogle Scholar
  64. Rodríguez M, Specker JL (1991) In vitro effects of arginine vasotocin on testosterone production by testes of rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 83:249–257CrossRefPubMedGoogle Scholar
  65. Rose MT, Henikoff GJ, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucl Acids Res 13:3763–3766CrossRefGoogle Scholar
  66. Sangiao-Alvarellos S, Polakof S, Arjona FJ, Kleszczynska A, Martín del Río MP, Míguez JM, Soengas JL, Mancera JM (2006) Osmoregulatory and metabolic changes in the gilthead sea bream Sparus auratus after arginine vasotocin (AVT) treatment. Gen Comp Endocrinol 148:348–358CrossRefPubMedGoogle Scholar
  67. Selvam R, Jurkevich A, Kang SW, Mikhailova MV, Cornett LE, Kuenzel WJ (2013) Distribution of the vasotocin subtype four receptor (VT4R) in the anterior pituitary gland of the chicken, Gallus gallus, and its possible role in the avian stress response. J Neuroendocrinol 25:56–66CrossRefPubMedGoogle Scholar
  68. Semsar K, Godwin J (2004) Multiple mechanisms of phenotype development in the bluehead wrasse. Horm Behav 45:345–353CrossRefPubMedGoogle Scholar
  69. Singh V, Joy KP (2008) Immunocytochemical localization, HPLC characterization, and seasonal dynamics of vasotocin in the brain, blood plasma and gonads of the catfish Heteropneustes fossilis. Gen Comp Endocrinol 159:214–225CrossRefPubMedGoogle Scholar
  70. Singh V, Joy KP (2009) Relative in vitro seasonal effects of vasotocin and isotocin on ovarian steroid hormone levels in the catfish Heteropneustes fossilis. Gen Comp Endocrinol 162:257–264CrossRefPubMedGoogle Scholar
  71. Singh V, Joy KP (2010) An involvement of vasotocin in oocyte hydration in the catfish Heteropneustes fossilis: a comparison with effects of isotocin and hCG. Gen Comp Endocrinol 166:504–512CrossRefPubMedGoogle Scholar
  72. Singh V, Joy KP (2011) Vasotocin induces final oocyte maturation and ovulation through production of a maturation-inducing steroid in the catfish Heteropneustes fossilis. Gen Comp Endocrinol 174:15–21CrossRefPubMedGoogle Scholar
  73. Srivastava R, Cornett LE, Chaturvedi CM (2008) Effect of estrogen and its antagonist on the expression of arginine vasotocin (AVT) and its oxytocic-like receptor VT3 in the shell gland of Japanese quail, Coturnix coturnix japonica. Comp Biochem Physiol A 151:551–559CrossRefGoogle Scholar
  74. Sugimoto T, Saito M, Mochizuki S, Watanabe Y, Hashimoto S, Kawashima H (1994) Molecular cloning and function expression of a cDNA encoding the human V1b receptor vasopressin receptor. J Biol Chem 269:27088–27092PubMedGoogle Scholar
  75. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedCentralPubMedGoogle Scholar
  76. Tan FL, Lolait SJ, Brownstein MJ, Saito N, MacLeod V, Baeyens DA, Mayeux PR, Jones SM, Cornett LE (2000) Molecular cloning and functional characterization of a vasotocin receptor subtype that is expressed in the shell gland and brain of the domestic chicken. Biol Reprod 62:8–15CrossRefPubMedGoogle Scholar
  77. Thibonnier M, Auzan C, Madhun Z, Wilkins P, Berti-Mattera L, Clauser E (1994) Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. J Biol Chem 269:3304–3310PubMedGoogle Scholar
  78. Thompson JD, Higgins DG, Gibson JF (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680CrossRefPubMedCentralPubMedGoogle Scholar
  79. von Heijne G (1992) Membrane protein structure prediction: hydrophobicity analysis and the ‘positive inside’ rule. J Mol Biol 225:487–494CrossRefGoogle Scholar
  80. Warne JM (2001) Cloning and characterization of an arginine vasotocin receptor from the euryhaline flounder Platichthys flesus. Gen Comp Endocrinol 122:312–319CrossRefPubMedGoogle Scholar
  81. Warne JM, Balment RJ (1997) Changes in plasma arginine vasotocin (AVT) concentration and dorsal aortic blood pressure following AVT injection in the teleost Platichthys flesus. Gen Comp Endocrinol 105:358–364CrossRefPubMedGoogle Scholar
  82. Warne JM, Harding KE, Balment RJ (2002) Neurohypophysial hormones and renal function in fish and mammals. Comp Biochem Physiol B 132:231–237CrossRefPubMedGoogle Scholar
  83. Yamaguchi Y, Kaiya H, Konno N, Iwata E, Miyazato M, Uchiyama M, Bell JD, Toop T, Donald JA, Venkatesh B, Hyodo S (2012) The fifth neurohypophysial hormone receptor is structurally related to the V2-type receptor but functionally similar to V1-type receptors. Gen Comp Endocrinol 178:519–528CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Zoology, Centre of Advanced StudyBanaras Hindu UniversityVaranasiIndia
  2. 2.Zoology Department, Mahila MahavidhyalayaBanaras Hindu UniversityVaranasiIndia

Personalised recommendations