Advertisement

Fish Physiology and Biochemistry

, Volume 41, Issue 2, pp 345–356 | Cite as

Continuous lighting inhibits the onset of reproductive cycle in pikeperch males and females

  • I. Ben Ammar
  • F. Teletchea
  • S. Milla
  • W. N. Ndiaye
  • Y. Ledoré
  • H. Missaoui
  • P. Fontaine
Article

Abstract

The effect of a constant photoperiod on the inhibition of male and female reproductive cycles was studied in pikeperch Sander lucioperca. Over a 153-day period, batches of pikeperch (2 years, 950 g) breeders were kept under either under natural or artificial photoperiod conditions (24L:0D) (30–35 fish/tank, triplicate) and sampled in late June (start of the photoperiod decrease in natural conditions), late August (start of temperature decrease) and late November (exogenous vitellogenesis) (7–10 fish/tank/sampling date). Morphological parameters, sexual steroids, alkaline-labile phosphate (µg/mL) levels and gamete developmental stages were investigated. Gonado-somatic index (%), developmental stages and sexual steroid levels (17β-estradiol, testosterone and 11-ketotestosterone, ng/mL) in both sexes and oocyte diameter (µm) and plasma alkaline-labile phosphate (µg/mL) in females were lower in response to a continuous lighting (24L:0D). In both sexes, continuous lighting applied in June for 153 days totally inhibited or delayed the onset of the reproductive cycle. In conclusion, photoperiod manipulation can be used to delay the pikeperch reproductive cycle, even if temperature decreases. This is the first report of the inhibitory effect of photoperiod on the onset of the reproductive cycle in pikeperch.

Keywords

Pikeperch Continuous lighting Photoperiod Onset of reproductive cycle 

Notes

Acknowledgments

We would like to thank all members of the AFPA Research Unit for their active collaboration in this study. We also like to thank Valérie Legué and Frédéric Guinet from UMR INRA/Lorraine University “Interactions arbres-microorganismes” (IAM) and Maryline Harroué from UMR INRA/AgroParis Tech “Laboratoire d’étude des ressources forêt-bois” (Lerfob) for the provision of the necessary equipment to achieve the histological analysis (Technical Platform of functional ecogenomics, INRA Champenoux, France) and Daniel Van Vlaender from Facultés Universitaires Notre-Dame de la Paix (FUNDP), Namur, Belgium for his help with histological and ALP protocols. This study was partly funded by the Company ASIALOR and the Tunisian Ministry of Higher Education and Research.

References

  1. Abdulfatah A, Fontaine P, Kestemont P, Gardeur JN, Marie M (2011) Effects of photothermal kinetics and amplitude of photoperiod decrease on the induction of the reproduction cycle in female Eurasian perch Perca fluviatilis. Aquaculture 322–323:169–176CrossRefGoogle Scholar
  2. Abdulfatah A, Fontaine P, Kestemont P, Milla S, Marie M (2013) Effects of the thermal threshold and the timing of temperature reduction on the initiation and course of oocyte development in cultured female of Eurasian perch Perca fluviatilis. Aquaculture 376–379:90–96CrossRefGoogle Scholar
  3. Almeida FF, Taranger GL, Norberg B, Karlsen Ø, Bogerd J, Schulz RW (2009) Photoperiod-modulated testis maturation in Atlantic cod (Gadus morhua, L.). Biol Reprod 80(4):631–640CrossRefPubMedGoogle Scholar
  4. Amer MA, Miura T, Miura C, Yamauchi K (2001) Involvement of sex steroid hormones in the early stages of spermatogenesis in Japanese huchen (Hucho perryi). Biol Reprod 65(4):1057–1066CrossRefPubMedGoogle Scholar
  5. Babin PJ, Carnevali O, Lubzens E, Schneider WJ (2007) Molecular aspects of oocyte vitellogenesis in fish. In: Babin PJ, Cerdá J, Lubzens E (eds) The fish oocyte: from basic studies to biotechnological applications. Springer, The Netherlands, pp 39–76CrossRefGoogle Scholar
  6. Billard R (1986) Spermatogenesis and spermatology of some teleost fish species. Reprod Nutr Dev 26:877–920CrossRefGoogle Scholar
  7. Billard R, Fostier A, Weil C, Breton B (1982) Endocrine control of spermatogenesis in teleost fish. Can J Fish Aquat Sci 39:65–79CrossRefGoogle Scholar
  8. Borg B (1994) Androgens in teleost fish. Comp Biochem Physiol 109C:219–245Google Scholar
  9. Bromage N, Porter M, Randall C (2001) The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197:63–98CrossRefGoogle Scholar
  10. Carrillo M, Zanuy S, Prat F, Serrano R, Bromage N (1993) Environmental and hormonal control of reproduction in sea bass. In: Bromage N, Donaldson EM, Carrillo M, Zanuy S, Planas J (eds) Recent advances in aquaculture IV. Blackwell Science, Oxford, pp 43–54Google Scholar
  11. Carrillo M, Zanuy S, Prat F, Cerda J, Ramos J, Mañanós E, Bromage N (1995) Sea bass (Dicentrarchus labrax). In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality. Blackwell Science, Oxford, pp 138–168Google Scholar
  12. Davie A, Porter MJ, Bromage NR, Migaud H (2007a) The role of seasonally altering photoperiod in regulating physiology in Atlantic cod (Gadus morhua). Part I. Sexual maturation. Can J Fish Aquat Sci 64(1):84–97CrossRefGoogle Scholar
  13. Davie A, Mazorra de Quero C, Bromage NR, Treasurer J, Migaud H (2007b) Inhibition of sexual maturation in tank reared haddock (Melanogrammus aeglefinus) through the use of constant light photoperiods. Aquaculture 270(1):379–389CrossRefGoogle Scholar
  14. Divers SL, McQuillan HJ, Matsubara H, Todo T, Lokman PM (2010) Effects of reproductive stage and 11-ketotestosterone on LPL mRNA levels in the ovary of the shortfinned eel. J Lipid Res 51(11):3250–3258CrossRefPubMedCentralPubMedGoogle Scholar
  15. FAO© (2013) Cultured Aquatic Species Information Programme. Sander lucioperca. Cultured Aquatic Species Information Programme. Text by Zakęś Z, in: FAO Fisheries and Aquaculture Department. http://www.fao.org/fishery/culturedspecies/Sander_lucioperca/en. Accessed 02 December 2013
  16. Fontaine P (2009) Développement de la pisciculture continentale européenne et domestication de nouvelles espèces. Cah Agric 2–3:144–146 (in French)Google Scholar
  17. Fostier A, Jalabert B, Billard R, Breton B (1983) The gonadal steroids. In: Hoar WS, Randall DJ, Donaldson EM (eds) Fish physiology IX A. Academic Press, New York, pp 277–345Google Scholar
  18. Gagné F, Blaise C (2000) Organic Alkali-Labile Phosphates in biological materials: a generic assay to detect vitellogenin in biological tissues. Environ Toxicol 15:243–247CrossRefGoogle Scholar
  19. Hansen T, Karlsen Ø, Taranger GL, Hemre G-H, Holm JC, Kjesbu OS (2001) Growth, gonadal development and spawning time of Atlantic cod (Gadus morhua) reared under diffrent photoperiods. Aquaculture 203:51–67Google Scholar
  20. Henderson BA, Wong JL, Nepszy SJ (1996) Reproduction of Walleye in lake Erie: allocation of energy. Can J Fish Aquat Sci 53:127–133CrossRefGoogle Scholar
  21. Hermelink B, Wuertz S, Trubiroha A, Rennert B, Kloas W, Schulz C (2011) Influence of temperature on puberty and maturation of pikeperch, Sander lucioperca. Gen Comp Endocrinol 172:282–292CrossRefPubMedGoogle Scholar
  22. Hermelink B, Wuertz A, Rennert B, Kloas W, Schulz C (2013) Temperature control of pikeperch (Sander lucioperca) maturation in recirculating aquaculture systems—induction of puberty and course of gametogenesis. Aquaculture 400–401:36–45CrossRefGoogle Scholar
  23. Hildahl J, Taranger GL, Norberg B, Haug TM, Weltzien FA (2013) Differential regulation of GnRH ligand and receptor genes in the brain and pituitary of Atlantic cod exposed to different photoperiod. Gen Comp Endocrinol 180:7–14CrossRefPubMedGoogle Scholar
  24. Imsland AK, Folkvord A, Jónsdóttir ÓD, Stefansson SO (1997) Effects of exposure to extended photoperiods during the first winter on long-term growth and age at first maturity in turbot (Scophthalmus maximus). Aquaculture 159(1):125–141CrossRefGoogle Scholar
  25. Kestemont P, Mélard C (2000) Aquaculture. In: Craig JF (ed) Percid fishes systemics, ecology and exploitation. Blackwell Science, Oxford, pp 191–224CrossRefGoogle Scholar
  26. Kobayashi M, Aida K, Stacey NE (1991) Induction of testis development by implantation of 11-ketotestosterone in female goldfish. Zool Sci 8(2):389–393Google Scholar
  27. Langeron M (1942) Précis de Microscopie: Technique-Expérimentation-Diagnostic. Masson et Cie, Paris. 1339 pp (in French)Google Scholar
  28. Lappalainen J, Dorner H, Wysujack K (2003) Reproduction biology of pikeperch (Sander lucioperca L.)—a review. Ecol Freshw Fish 12:95–106CrossRefGoogle Scholar
  29. Lokman P, Harris B, Kusakabe M, Kime DE, Schulz RW, Adachi S, Young G (2002) 11-Oxygenated androgens in female teleosts: prevalence, abundance, and life history implications. Gen Comp Endocrinol 129(1):1–12CrossRefPubMedGoogle Scholar
  30. Lokman PM, George KA, Divers SL, Algie M, Young G (2007) 11-Ketotestosterone and IGF-I increase the size of previtellogenic oocytes from shortfinned eel, Anguilla australis, in vitro. Reproduction 133:955–967CrossRefPubMedGoogle Scholar
  31. Lubzens E, Cerdà J, Young G, Bobe J (2010) Oogenesis in teleost fish: how fish eggs are formed. Gen Comp Endocrinol 165:367–389CrossRefPubMedGoogle Scholar
  32. M’Hetli M, Ben Khemis I, Hamza N, Turki B, Turki O (2011) Allometric growth and reproductive biology traits of pikeperch Sander lucioperca at the southern edge of its range. J Fish Biol 78:567–579CrossRefPubMedGoogle Scholar
  33. Malison JA, Procarione LS, Kayes TB, Hansen JF, Held JA (1998) Induction of out-of-season spawning in walleye (Stizostedion vitreum). Aquaculture 163:151–161CrossRefGoogle Scholar
  34. Melamed P, Rosenfeld H, Elizur A, Yaron Z (1998) Endocrine regulation of gonadotropin and growth hormone gene transcription in fish. Comp Biochem Physiol, C: Comp Pharmacol Toxicol 119(3):325–338Google Scholar
  35. Migaud H, Fontaine P, Sulistyo I, Kestemont P, Gardeur JN (2002) Induction of out-of-season spawning in Eurasian perch Perca fluviatilis. Effects of rates of cooling and cooling durations on female gametogenesis and spawning. Aquaculture 205:253–267CrossRefGoogle Scholar
  36. Migaud H, Mandiki R, Gardeur JN, Kestemont P, Bromage N, Fontaine P (2003) Influence of photoperiod regimes on the Eurasian perch gonadogenesis and spawning. Fish Physiol Biochem 28:395–397CrossRefGoogle Scholar
  37. Migaud H, Gardeur JN, Kestemont P, Fontaine P (2004a) Off-season spawning of Eurasian perch Perca fluviatilis. Aquac Int 12:87–102CrossRefGoogle Scholar
  38. Migaud H, Fontaine P, Kestemont P, Wang N, Brun-Bellut J (2004b) Influence of photoperiod on the onset of gonadogenesis in Eurasian perch Perca fluviatilis. Aquaculture 241:561–574CrossRefGoogle Scholar
  39. Migaud H, Wang N, Gardeur JN, Fontaine P (2006) Influence of photoperiod on reproductive performances in Eurasian perch Perca fluviatilis. Aquaculture 252:385–393CrossRefGoogle Scholar
  40. Migaud H, Davie A, Taylor JF (2010) Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. J Fish Biol 76:27–68CrossRefPubMedGoogle Scholar
  41. Milla S, Mandiki SNM, Hubermont P, Rougeot C, Mélard C, Kestemont P (2009) Ovarian steroidogenesis inhibition by constant photothermal conditions is caused by a lack of gonadotropin stimulation in Eurasian perch. Gen Comp Endocrinol 163(3):242–250CrossRefPubMedGoogle Scholar
  42. Miura C, Miura T (2011) Analysis of spermatogenesis using an eel model. Aqua-BioSci Monogr 4(4):105–129CrossRefGoogle Scholar
  43. Miura T, Yamauchi K, Takahashi H, Nagahama Y (1991) Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc Natl Acad Sci USA 88:5774–5778CrossRefPubMedCentralPubMedGoogle Scholar
  44. Mueller-Belecke A, Zienert S (2008) Out-of-season spawning of pikeperch (Sander lucicoperca L.) without the need for hormonal treatments. Aquacult. Res. 39:1279-1285Google Scholar
  45. Mylonas CC, Fostier A, Zanuy S (2010) Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endocrinol 165:516–534CrossRefPubMedGoogle Scholar
  46. Nagahama Y (1994) Endocrine regulation of gametogenesis. Fish Int J Dev Biol 38:217–229Google Scholar
  47. Poulet N (2004) Le sandre (Sander lucioperca (L.)): biologie, comportement et dynamique des populations en Camargue (Bouches du Rhône, France). Thesis University of Toulouse III (in French)Google Scholar
  48. Pourhosein Sarameh S, Falahatkar B, Takami GA, Efatpanah I (2012) Effects of different photoperiods and handling stress on spawning and reproductive performance of pikeperch Sander lucioperca. Anim Reprod Sci 132(3):213–222CrossRefPubMedGoogle Scholar
  49. Rad F, Bozaoğlu S, Ergene Gözükara S, Karahan A, Kurt G (2006) Effects of different long-day photoperiods on somatic growth and gonadal development in Nile tilapia (Oreochromis niloticus L.). Aquaculture 255(1):292–300Google Scholar
  50. Remacle C (1976) Actions hormonales sur les cellules germinales males de Carassius auratus L. en culture organotypique. Gen Comp Endocrinol 29:480–491 (in French)CrossRefPubMedGoogle Scholar
  51. Rinchard J, Kestemont P (1996) Comparative study of reproductive biology in single and multiple spawner cyprinid fish: I. Morphological and histological features. J Fish Biol 49:883–894CrossRefGoogle Scholar
  52. Rohr DH, Lokman PM, Davie PS, Young G (2001) 11-Ketotestosterone induces silvering-related changes in immature female short-finned eels, Anguilla australis. Comp Biochem Physiol A: Mol Integr Physiol 130:701–714CrossRefGoogle Scholar
  53. Schlumberger O, Proteau JP (1996) Reproduction of pike-perch (Stizostedion lucioperca) in captivity. J Appl Ichthyol 12:149–152CrossRefGoogle Scholar
  54. Schneider F, Poehland R (2009) Endocrinology of reproduction. In: Jamieson BG (ed) Reproductive biology and phylogeny of fishes (Agnathans and bony fishes). Reproductive Biology and Phylogeny Series, Science Publishers, pp 54–93Google Scholar
  55. Schulz RW, de França LR, Lareye JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T (2010) Spermatogenesis in fish. Gen Comp Endocrinol 165:390–411CrossRefPubMedGoogle Scholar
  56. Shewmon LN, Godwin JR, Murashige RS, Daniels HV (2007) Environmental manipulation of growth and sexual maturation in yellow perch Perca flavescens. J World Aquac Soc 38:383–394CrossRefGoogle Scholar
  57. Sumpter JP (1990) General concepts of seasonal reproduction. In: Munro AD, Scott AP, Lam TJ (eds) Reproductive Seasonality in Teleosts: Environmental Influences. CRC Press, Boca Raton, pp 13–31Google Scholar
  58. Taranger GL, Carillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen Ǿ, Norberg B, Andersson E, Hansen T (2010) Control of puberty in farmed fish. Gen Comp Endocrinol 165:483–515CrossRefPubMedGoogle Scholar
  59. Teletchea F, Fontaine P (2014) Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish 15:181–195CrossRefGoogle Scholar
  60. Turner CL (1919) The seasonal cycle in the spermaty of the perch. J Morphol 32:681–711CrossRefGoogle Scholar
  61. Wallace RA, Selman K (1981) Cellular dynamic aspects of oocyte growth in teleosts. Am Zool 21:325–343Google Scholar
  62. Wang N, Teletchea F, Kestemont P, Milla S, Fontaine P (2010) Photothermal control of the reproductive cycle in temperate fishes. Rev Aquac 2:209–222CrossRefGoogle Scholar
  63. Zakes Z, Demska-Zakes K (2009) Controlled reproduction of pikeperch Sander lucioperca (L.). A review. Arch Pol Fish 17:153–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • I. Ben Ammar
    • 1
    • 2
  • F. Teletchea
    • 1
  • S. Milla
    • 1
  • W. N. Ndiaye
    • 1
  • Y. Ledoré
    • 1
  • H. Missaoui
    • 2
  • P. Fontaine
    • 1
  1. 1.Unité de Recherche Animal et Fonctionnalités des Produits Animaux, USC INRA 340Université de LorraineVandœuvre-lès-NancyFrance
  2. 2.Laboratoire des Sciences halieutiquesNational Agronomic Institute of TunisCité Mahrajène, TunisTunisia

Personalised recommendations