Fish Physiology and Biochemistry

, Volume 40, Issue 6, pp 1771–1781 | Cite as

Protection of common carp (Cyprinus carpio L.) spermatozoa motility under oxidative stress by antioxidants and seminal plasma

  • A. Shaliutina-Kolešová
  • I. Gazo
  • J. Cosson
  • O. Linhart


The protective influence of seminal plasma and the antioxidants catalase (CAT), superoxide dismutase (SOD), and glutathione (GTH) on quality parameters, oxidative stress indices, and antioxidant activity was studied in common carp (Cyprinus carpio) spermatozoa exposed to the xanthine–xanthine oxidase (X–XO) system. Fish spermatozoa were incubated for 5 and 20 min at 4 °C with X–XO concentrations of 1 mM X–0.1 U/mL, 0.6 mM X–0.05 U/mL, 0.3 mM X–0.025 U/mL, and 0.1 mM X–0.0125 U/mL. A dose-dependent reduction in spermatozoa motility and velocity was observed at concentrations of 0.1 mM X–0.0125 U/mL to 1 mM X–0.1 U/mL XO. Increase in spermatozoa motility parameters was recorded following treatment with antioxidants and seminal plasma. The level of the oxidative stress indices lipid peroxidation (LPO) and carbonyl derivatives of proteins (CP) was significantly reduced after addition of CAT, SOD, or GTH along with seminal plasma. Significant differences in SOD, glutathione reductase, and glutathione peroxidase activity were seen in spermatozoa incubated with, compared to that without, seminal plasma at all studied X–XO concentrations. The data demonstrated that CAT, SOD, or GTH in combination with SP can reduce reactive oxygen species stress in fish spermatozoa and improve spermatozoa quality.


Antioxidant enzymes Carp sperm Reactive oxygen species Seminal plasma Spermatozoa motility 



Xanthine–xanthine oxidase


Lipid peroxidation


Carbonyl proteins


Thiobarbituric acid-reactive substances


Superoxide dismutase


Glutathione reductase


Glutathione peroxidase



Support for this research was provided by projects: CENAKVA CZ.1.05/2.1.00/01.0024, strengthening of excellence of scientific teams in USB FFPW CZ.1.07/2.3.00/20.0024, GAJU 114/2013/Z and GACR P502/11/0090 and No. GACR P502/12/1973. The results of the project LO1205 were obtained with a financial support from the MEYS of the CR under the NPU I program. The Lucidus Consultancy, UK, is gratefully acknowledged for English correction and suggestions.


  1. Aitken RJ, Buckingham D, Harkiss D (1993) Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil 97:441–450PubMedCrossRefGoogle Scholar
  2. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M (1995) Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 108:2017–2025PubMedGoogle Scholar
  3. Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS (1998) Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 59:1037–1046PubMedCrossRefGoogle Scholar
  4. Alvarez JG, Storey BT (1989) Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res 23:77–90PubMedCrossRefGoogle Scholar
  5. Bansal AK, Bilaspuri GS (2007) Effect of ferrous ascorbate on in vitro capacitation and acrosome reaction in cattle bull spermatozoa. Anim Sci Rep 1:69–77Google Scholar
  6. Bansal AK and Bilaspuri GS (2010) Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int 37:61–68Google Scholar
  7. Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MC (2000) The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J Androl 21:895–902PubMedGoogle Scholar
  8. Cabrita E, Diogo P, Martínez-Páramo S, Sarasquete C, Dinis MT, Dinis MT (2011) The influence of certain aminoacids and vitamins on post-thaw fish sperm motility, viability and DNA fragmentation. Anim Reprod Sci 125:189–195PubMedCrossRefGoogle Scholar
  9. Caille N, Rodina M, Kocour M, Gela D, Flajshans M, Linhart O (2006) Quality, motility and fertility of tench (Tinca tinca) sperm in relation to LHRH analogue and carp pituitary treatments. Aquacult Int 4:75–87CrossRefGoogle Scholar
  10. Carlberg I, Mannervik B (1975) Purification and characterization of flavoenzyme glutathione reductase from rat liver. Biol Chem 250:5475–5480Google Scholar
  11. Cheema RS, Bansal AK, Bilaspuri GS (2009) Manganese provides antioxidant protection for sperm cryopreservation that may offer new consideration for clinical fertility. Oxidative Med Cell Longev 2:152–159CrossRefGoogle Scholar
  12. Choi GJ, Lee HJ, Cho KY (1996) Lipid peroxidation and membrane disruption by vinclozolin in dicarboximide-susceptible and -resistant isolates of Botrytis cinerea. Pestic Biochem Physiol 55:29–39PubMedCrossRefGoogle Scholar
  13. Ciereszko A, Dabrowski K (1995) Sperm quality and ascorbic acid concentration in rainbow trout semen are affected by dietary vitamin C: an across-season study. Biol Reprod 52:982–988PubMedCrossRefGoogle Scholar
  14. Ciereszko A, Dabrowski K, Kuchrczyk MJ, Dobosz S, Goryczko K, Glogowski J (1999) The presence of uric acid, an antioxidative substance, in fish seminal plasma. Fish Physiol Biochem 21:313–315CrossRefGoogle Scholar
  15. Ciereszko A, Glogowski J, Dabrowski K (2000) Biochemical characteristics of seminal plasma and spermatozoa of freshwater fishes. In: Tiersch TR, Mazik PM (eds) Cryopreservation in aquatic species. World Aquaculture Society, Baton Rouge, pp 20–48Google Scholar
  16. Cosson J, Linhart O, Mims S, Shelton W, Rodina M (2000) Analysis of motility parameters from paddlefish (Polyodon spathula) and shovelnose sturgeon (Scaphirhynchus platorynchus) spermatozoa. J Fish Biol 56:1348–1367CrossRefGoogle Scholar
  17. de Lamirande E, Gagnon C (1992) Reactive oxygen species and human spermatozoa. I. Effect on the motility of intact spermatozoa and on sperm axonemes. J Androl 13:368–378PubMedGoogle Scholar
  18. de Lamirande E, Gagnon C (1993) A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl 16:21–25PubMedCrossRefGoogle Scholar
  19. de Lamirande E, Gagnon C (1995) Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med 18:487–496PubMedCrossRefGoogle Scholar
  20. Domínguez-Rebolledo ÁE, Fernández-Santos MR, Bisbal A, Ros-Santaella JL, Ramón M, Carmona M (2010) Improving the effect of incubation and oxidative stress on thawed spermatozoa from red deer by using different antioxidant treatments. Reprod Fertil Dev 22:856–870PubMedCrossRefGoogle Scholar
  21. Gazo I, Linhartova P, Shaliutina A, Hulak M (2013) Influence of environmentally relevant concentrations of vinclozolin on sperm quality, DNA integrity, and antioxidant responses in sterlet Acipenser ruthenus spermatozoa. Chem Biol Interact 203:377–385PubMedCrossRefGoogle Scholar
  22. Griveau JF, Renard P, Le Lannou D (1995) Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int J Androl 18:67–74PubMedCrossRefGoogle Scholar
  23. Hagedorn M, McCarthy M, Carter VL, Meyers SA (2012) Oxidative stress in zebrafish (Danio rerio) sperm. PLoS One 7(6):e39397PubMedCentralPubMedCrossRefGoogle Scholar
  24. Koppers AJ, Garg ML, Aitken RJ (2010) Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med 48:112–119PubMedCrossRefGoogle Scholar
  25. Koziorowska-Gilun M, Koziorowski M, Fraser L, Strzeżek J (2011) Antioxidant defence system of boar caudaepididymidal spermatozoa and reproductive tract fluids. Reprod Domest Anim 46(3):527–533PubMedCrossRefGoogle Scholar
  26. Lahnsteiner F, Mansour N, Plaetzer K (2010) Antioxidant systems of brown trout (Salmo trutta f. fario) semen. Anim Reprod Sci 119:314–321PubMedCrossRefGoogle Scholar
  27. Lahnsteiner F, Mansour N, Kunz FA (2011) The effect of antioxidants on the quality of cryopreserved semen in two salmonid fish, the brook trout (Salvelinus fontinalis) and the rainbow trout (Oncorhynchus mykiss). Theriogenology 76:882–890PubMedCrossRefGoogle Scholar
  28. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium deficient rat liver. Biochem Biophys Res Commun 71:952–958PubMedCrossRefGoogle Scholar
  29. Lenz AG, Costabel U, Shaltiel S, Levine RL (1989) Determination of carbonyl groups in oxidatively modified proteins by reduction with tritiated sodium borohydride. Anal Biochem 177:419–425PubMedCrossRefGoogle Scholar
  30. Li P, Li ZH, Dzyuba B, Hulak M, Rodina M, Linhart O (2010) Evaluating the impacts of osmotic and oxidative stress on common carp (Cyprinus carpio, L.) sperm caused by cryopreservation techniques. Biol Reprod 83:852–858PubMedCrossRefGoogle Scholar
  31. Link EM, Riley PA (1988) Role of hydrogen peroxide in the cytotoxicity of the xanthine/xanthine oxidase system. Biochem J 249:391–399PubMedCentralPubMedGoogle Scholar
  32. Liu L, Dabrowski K, Ciereszko A (1995) Protective effect of seminal plasma proteins on the degradation of ascorbic acid. Mol Cell Biochem 148:59–66PubMedCrossRefGoogle Scholar
  33. Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB (2005) Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int J Biochem Cell Biol 37:1319–1330PubMedCrossRefGoogle Scholar
  34. Marklund S, Marklund G (1974) Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474PubMedCrossRefGoogle Scholar
  35. Martínez-Páramo S, Diogo P, Dinis MT, Herráez MP, Sarasquete C, Cabrita E (2012) Incorporation of ascorbic acid and α-tocopherol to the extender media to enhance antioxidant system of cryopreserved sea bass sperm. Theriogenology 77:1129–1136PubMedCrossRefGoogle Scholar
  36. Metwally MAA, Fouad IM (2009) Effects of L-ascorbic acid on sperm viability in male grass carp (Ctenopharyngodon idellus). Glob Vet 3(2):132–136Google Scholar
  37. Oakes KD, Van der Kraak GJ (2003) Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat Toxicol 63:447–463PubMedCrossRefGoogle Scholar
  38. Olson JS, Ballou DP, Palmer G, Massey V (1974) The reaction of xanthine oxidase with molecular oxygen. J Biol Chem 249:4350PubMedGoogle Scholar
  39. Rodina M, Gela D, Kocour M, Alavi SMH, Hulak M, Linhart O (2007) Cryopreservation of tench, Tinca tinca, sperm: sperm motility and hatching success of embryos. Theriogenology 67:931–940PubMedCrossRefGoogle Scholar
  40. Saleh RA, Agarwal A (2002) Oxidative stress and male infertility: from research bench to clinical practice. J Androl 23:737–752PubMedGoogle Scholar
  41. Shaliutina A, Hulak M, Dzuyba B, Linhart O (2012) Spermatozoa motility and variation in the seminal plasma proteome of Eurasian perch (Perca fluviatilis) during the reproductive season. Mol Reprod Dev 79(12):879–887PubMedCrossRefGoogle Scholar
  42. Shaliutina A, Hulak M, Gazo I, Linhartova P, Linhart O (2013a) Effect of short-term storage on quality parameters, DNA integrity, and oxidative stress in Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon sperm. Anim Reprod Sci 139(1–4):127–135PubMedCrossRefGoogle Scholar
  43. Shaliutina A, Gazo I, Cosson J, Linhart O (2013b) Comparison of oxidant and antioxidant status of seminal plasma and spermatozoa of several fish species. Czech J Anim Sci 58(7):313–320Google Scholar
  44. Sharma RK, Agarwal A (1996) Role of reactive oxygen species in male infertility. Urology 48:835–850PubMedCrossRefGoogle Scholar
  45. Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ, Agarwal A (1999) The reactive oxygen species—total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 14:2801–2807PubMedCrossRefGoogle Scholar
  46. Shiva M, Gautam AK, Verma Y, Shivgotra V, Doshi H, Kumar S (2011) Association between sperm quality, oxidative stress, and seminal antioxidant activity. Clin Biochem 44:319–324PubMedCrossRefGoogle Scholar
  47. Sikka SC (1996) Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci 1:78–86Google Scholar
  48. Sikka SC (2001) Relative impact of oxidative stress on male reproductive function. Curr Med Chem 8:851–862PubMedCrossRefGoogle Scholar
  49. Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:715–1733Google Scholar
  50. Trenzado C, Hidalgo MC, García-Gallego M, Morales AE, Furné M, Domezain A, Domezain J, Sanz A (2006) Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study. Aquaculture 254:758–767CrossRefGoogle Scholar
  51. Zhang XZ, Xie P, Wang WM, Li DP, Shi ZC (2008) Plasma biochemical responses of the omnivorous crucian carp (Carassius auratus) to crude cyanobacterial extracts. Fish Physiol Biochem 34:323–329PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Shaliutina-Kolešová
    • 1
  • I. Gazo
    • 1
  • J. Cosson
    • 1
  • O. Linhart
    • 1
  1. 1.Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and HydrobiologyUniversity of South Bohemia in Ceske BudejoviceVodňanyCzech Republic

Personalised recommendations