Advertisement

Fish Physiology and Biochemistry

, Volume 40, Issue 6, pp 1721–1730 | Cite as

Reference gene selection for real-time RT-PCR normalization in rice field eel (Monopterus albus) during gonad development

  • Qing Hu
  • Wei Guo
  • Yu Gao
  • Rong Tang
  • Dapeng Li
Article

Abstract

Real-time reverse transcriptase (RT) polymerase chain reaction (PCR) requires data normalization using an appropriate reference gene in order to obtain more reliable results with biological significance. We cloned a partial sequence of elongation factor-1-α (EF1α) and ribosomal protein L17 (RPL17) from Monopterus albus. We investigated the suitability of five commonly used reference genes [18S ribosomal RNA (18S), cytoskeletal protein (β-actin), glyceraldehyde phosphate dehydrogenase (GAPDH), EF1α and RPL17] as potential quantitative reference genes for normalizing real-time RT-PCR data generated in gonads of different developmental stages and in other tissues of M. albus. Analysis of the data indicated that 18S, β-actin and GAPDH are not suitable as reference genes because of their levels of variations of expression. EF1α and RPL17 might be suitable as reference genes in the gonads of different developmental stages as well as in other tissues of M. albus.

Keywords

Reference gene Real-time RT-PCR Stability Monopterus albus 

Notes

Acknowledgments

This study was supported by National Department Public Benefit Research Foundation of China (Project No. 201003076), the Twelfth 5-Year National Key Science and Technology Research Program of China (Project No. 2012BAD25B06), the National Natural Foundation of China (Project No. 30970529), and Fundamental Research Funds for the Central Universities of China (2013PY024).

References

  1. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250PubMedCrossRefGoogle Scholar
  2. Barbu V, Dautry F (1989) Northern blot normalization with a 28S rRNA olinucleotide probe. Nucleic Acids Res 17:7115PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brattelid T, Winer L, Levy FO, Liestøl K, Sejersted O, Andersson K (2010) Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies. BMC Mol Biol 11:22PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bursten S, Stevenson F, Torrano F, Lovett D (1991) Mesangial cell activation by bacterial endotoxin. Induction of rapid cytoskeletal reorganization and gene expression. Am J Pathol 139:371–382PubMedCentralPubMedGoogle Scholar
  5. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193PubMedCrossRefGoogle Scholar
  6. Bustin S (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39PubMedCrossRefGoogle Scholar
  7. Casadei R, Pelleri MC, Vitale L, Facchin F, Lenzi L, Canaider S, Strippoli P, Frabetti F (2011) Identification of housekeeping genes suitable for gene expression analysis in the zebrafish. Gene Expr Patterns 11:271–276PubMedCrossRefGoogle Scholar
  8. Dang W, Sun L (2011) Determination of internal controls for quantitative real time RT-PCR analysis of the effect of Edwardsiella tarda infection on gene expression in turbot (Scophthalmus maximus). Fish Shellfish Immunol 30:720–728PubMedCrossRefGoogle Scholar
  9. Dhar AK, Bowers RM, Licon KS, Veazey G, Read B (2009) Validation of reference genes for quantitative measurement of immune gene expression in shrimp. Mol Immunol 46:1688–1695PubMedCrossRefGoogle Scholar
  10. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–119PubMedGoogle Scholar
  11. Fernandes JM, Mommens M, Hagen Ø, Babiak I, Solberg C (2008) Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comp Biochem Phys B 150:23–32CrossRefGoogle Scholar
  12. Filby AL, Tyler CR (2007) Appropriate ‘housekeeping’ genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol Biol 8:10PubMedCentralPubMedCrossRefGoogle Scholar
  13. Glare E, Divjak M, Bailey M, Walters E (2002) β-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax 57:765–770PubMedCentralPubMedCrossRefGoogle Scholar
  14. Huang X, Guo Y, Shui Y, Gao S, Yu H, Cheng H, Zhou R (2005) Multiple alternative splicing and differential expression of dmrt1 during gonad transformation of the rice field eel. Biol Reprod 73:1017–1024PubMedCrossRefGoogle Scholar
  15. Infante C, Matsuoka M, Asensio E, Cañavate J, Reith M, Manchado M (2008) Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Mol Biol 9:28PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ingerslev HC, Pettersen EF, Jakobsen RA, Petersen CB, Wergeland HI (2006) Expression profiling and validation of reference gene candidates in immune relevant tissues and cells from Atlantic salmon (Salmo salar L.). Mol Immunol 43:1194–1201PubMedCrossRefGoogle Scholar
  17. Jorgensen SM, Kleveland EJ, Grimholt U, Gjoen T (2006) Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Mar Biotechnol 8:398–408PubMedCrossRefGoogle Scholar
  18. Ke L, Chen Z, Yung W (2000) A reliability test of standard-based quantitative PCR: exogenous vs endogenous standards. Mol cell probe 14:127–135CrossRefGoogle Scholar
  19. Kobayashi T, Sasaki Y, Oshima Y, Yamamoto H, Mita H, Suzuki H, Toyota M, Tokino T, Itoh F, Imai K (2006) Activation of the ribosomal protein L13 gene in human gastrointestinal cancer. Int J Mol Med 18:161–170PubMedGoogle Scholar
  20. Li YP, Bang DD, Handberg KJ, Jorgensen PH, Zhang MF (2005) Evaluation of the suitability of six host genes as internal control in real-time RT-PCR assays in chicken embryo cell cultures infected with infectious bursal disease virus. Vet Microbiol 110:155–165PubMedCrossRefGoogle Scholar
  21. Liu C (1944) Rudimentary hermaphroditism in the symbranchoid eel, Monopterus javanensis. Sinensia 15:1–8Google Scholar
  22. Liu C, Ku K (1951) Histological changes in the gonad of Monopterus during sex transformation. Acta Hydrobiol Sin 2:85–109Google Scholar
  23. Liu JF, Guiguen Y, Liu SJ (2009) Aromatase (P450arom) and 11β-hydroxylase (P45011β) genes are differentially expressed during the sex change process of the protogynous rice field eel, Monopterus albus. Fish Physiol Biochem 35:511–518PubMedCrossRefGoogle Scholar
  24. McCurley AT, Callard GV (2008) Characterization of housekeeping genes in zebrafish: male–female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol 9:102PubMedCentralPubMedCrossRefGoogle Scholar
  25. Nygard AB, Jørgensen CB, Cirera S, Fredholm M (2007) Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 8:67PubMedCentralPubMedCrossRefGoogle Scholar
  26. Olsvik P, Lie K, Jordal AE, Nilsen T, Hordvik I (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 6:21PubMedCentralPubMedCrossRefGoogle Scholar
  27. Olsvik PA, Søfteland L, Lie KK (2008) Selection of reference genes for qRT-PCR examination of wild populations of Atlantic cod Gadus morhua. BMC Res Notes 1:47PubMedCentralPubMedCrossRefGoogle Scholar
  28. Øvergård AC, Nerland AH, Patel S (2010) Evaluation of potential reference genes for real time RT-PCR studies in Atlantic halibut (Hippoglossus hippoglossus L.); during development, in tissues of healthy and NNV-injected fish, and in anterior kidney leucocytes. BMC Mol Biol 11:36Google Scholar
  29. Penning LC, Vrieling HE, Brinkhof B, Riemers FM, Rothuizen J, Rutteman GR, Hazewinkel HA (2007) A validation of 10 feline reference genes for gene expression measurements in snap-frozen tissues. Vet Immunol Immunopathol 120:212–222PubMedCrossRefGoogle Scholar
  30. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515PubMedCrossRefGoogle Scholar
  31. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33PubMedCentralPubMedCrossRefGoogle Scholar
  32. Small BC, Murdock CA, Bilodeau-Bourgeois AL, Peterson BC, Waldbieser GC (2008) Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Comp Biochem Phys B 151:296–304CrossRefGoogle Scholar
  33. Sun JH, Nan LH, Gao CR, Wang YY (2012) Validation of reference genes for estimating wound age in contused rat skeletal muscle by quantitative real-time PCR. Int J Legal Med 126:113–120PubMedCrossRefGoogle Scholar
  34. Suzuki T, Higgins P, Crawford D (2000) Control selection for RNA quantitation. Biotechniques 29:332–337PubMedGoogle Scholar
  35. Tang R, Dodd A, Lai D, McNabb WC, Love DR (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochem Biophys Sin 39:384–390CrossRefGoogle Scholar
  36. Toegel S, Huang W, Piana C, Unger FM, Wirth M, Goldring MB, Gabor F, Viernstein H (2007) Selection of reliable reference genes for qPCR studies on chondroprotective action. BMC Mol Biol 8:13PubMedCentralPubMedCrossRefGoogle Scholar
  37. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034–research0034.11PubMedCentralPubMedCrossRefGoogle Scholar
  38. Wang Y, Zhang S (2012) EF1α is a useful internal reference for studies of gene expression regulation in amphioxus Branchiostoma japonicum. Fish Shellfish Immunol 32:1068–1073PubMedCrossRefGoogle Scholar
  39. Xiao YM, Chen L, Liu J, Liu WB, Chen HG, Zou LJ, Liu Y, Li DWC (2010) Contrast expression patterns of JNK1 during sex reversal of the rice-field eel. J Exp Zool B 314:242–256Google Scholar
  40. Yan HZ, Liou RF (2006) Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genet Biol 43:430–438PubMedCrossRefGoogle Scholar
  41. Zhang Z, Hu J (2007) Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative real-time RT-PCR. Toxicol Sci 95:356–368PubMedCrossRefGoogle Scholar
  42. Zheng WJ, Sun L (2011) Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immunol 30:638–645PubMedCrossRefGoogle Scholar
  43. Zhu G, Chang Y, Zuo J, Dong X, Zhang M, Hu G, Fang F (2001) Fudenine, a C-terminal truncated rat homologue of mouse prominin, is blood glucose-regulated and can up-regulate the expression of GAPDH. Biochem Biophys Res Commun 281:951–956PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Qing Hu
    • 1
    • 3
    • 4
  • Wei Guo
    • 1
    • 3
    • 4
  • Yu Gao
    • 1
    • 3
    • 4
  • Rong Tang
    • 1
    • 3
    • 4
  • Dapeng Li
    • 1
    • 2
    • 3
    • 4
  1. 1.College of FisheriesHuazhong Agricultural UniversityWuhanChina
  2. 2.Life Science CollegeHunan University of Arts and ScienceChangdeChina
  3. 3.Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhanChina
  4. 4.Key Laboratory of Freshwater Animal BreedingMinistry of AgricultureWuhanChina

Personalised recommendations