Advertisement

Fish Physiology and Biochemistry

, Volume 40, Issue 5, pp 1361–1371 | Cite as

Evaluation of the use of metallothionein as a biomarker for detecting physiological responses to mercury exposure in the bonnethead, Sphyrna tiburo

  • Christina J. Walker
  • James Gelsleichter
  • Douglas H. Adams
  • Charles A. Manire
Article

Abstract

Previous studies have demonstrated that sharks, perhaps more so than any other fishes, are capable of bioaccumulating the non-essential toxic metal mercury (Hg) to levels that threaten the health of human seafood consumers. However, few studies have explored the potential effects of Hg accumulation in sharks themselves. Therefore, the goal of this study was to examine if physiological effects occur in sharks in response to environmentally relevant levels of Hg exposure. To address this goal, the relationship between muscle Hg concentrations and muscle/hepatic levels of metallothionein (MT), a widely used protein biomarker of toxic metal exposure in fish, was examined in bonnetheads, Sphyrna tiburo, from three Florida estuaries. Total Hg concentrations in bonnethead muscle, as determined using thermal decomposition and atomic absorption spectrometry, ranged from 0.22 to 1.78 μg/g wet weight and were correlated with animal size. These observations were consistent with earlier studies on Florida bonnetheads, illustrating that they experience bioaccumulation of Hg, often to levels that threaten the health of these animals or consumers of their meat. However, despite this, MT concentrations measured using Western blot analysis were not correlated with muscle Hg concentrations. These results suggest that either environmentally relevant levels of Hg exposure and uptake are below the physiological threshold for inducing effects in sharks or MT is a poor biomarker of Hg exposure in these fishes. Of these two explanations, the latter is favored based on a growing body of evidence that questions the use of MTs as specific indicators of Hg exposure and effects in fish.

Keywords

Metallothionein Biomarker Mercury Sharks Sphyrna tiburo 

Notes

Acknowledgments

The authors acknowledge J. Tyminski and additional staff and student interns from Mote Marine Laboratory for their roles in sample collection, which was made possible by Environmental Protection Agency Grant No. R826128-01-0 to C.A. Manire. Although the research described in this article has been funded in part by the United States Environmental Protection Agency, it has not been subjected to the Agency’s required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred. W. Habich and D. Tremain from the Florida Fish and Wildlife Conservation Commission are acknowledged for their roles in mercury analysis. Additional portions of this research were supported by the University of North Florida.

References

  1. Adams DH, McMichael RH Jr (1999) Mercury levels in four species of sharks from the Atlantic coast of Florida. Fish Bull 379:372–379Google Scholar
  2. Adams DH, McMichael Jr RH, Henderson GE (2003) Mercury levels in marine and estuarine fishes of Florida 1989–2001. Florida Fish and Wildlife Conservation Commission FMRI technical report TR-9Google Scholar
  3. Adams DH, Sonne C, Basu N, Dietz R, Nam D-H, Leifsson PS, Jensen AL (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408:5808–5816PubMedCrossRefGoogle Scholar
  4. Aschner M, Syversen T, Souza DO, Rocha JB (2006) Metallothioneins: mercury species-specific induction and their potential role in attenuating neurotoxicity. Exp Biol 231:1468–1473 Google Scholar
  5. Baer KN, Thomas P (1990) Influence of capture stress, salinity and reproductive status on zinc associated with metallothionein-like proteins in the livers of three marine teleost species. Mar Environ Res 29:277–287Google Scholar
  6. Barrera-García A, O’Hara T, Galván-Magaña F, Méndez-Rodríguez LC, Castellini JM, Zenteno-Savín T (2012) Oxidative stress indicators and trace elements in the blue shark (Prionace glauca) off the east coast of the Mexican Pacific Ocean. Comp Biochem Physiol C: Toxicol Pharmacol 156:59–66. doi: 10.1016/j.cbpc.2012.04.003 Google Scholar
  7. Batchelar KL, Kidd KA, Munkittrick KR, Drevnick PE, Burgess NM (2013a) Reproductive health of yellow perch (Perca flavescens) from a biological mercury hotspot in Nova Scotia, Canada. Sci Total Environ 454–455:319–327. doi: 10.1016/j.scitotenv.2013.03.020 PubMedCrossRefGoogle Scholar
  8. Batchelar KL, Kidd KA, Drevnick PE, Munkittrick KR, Burgess NM, Roberts AP, Smith JD (2013b) Evidence of impaired health in yellow perch (Perca flavescens) from a biological mercury hotspot in northeastern North America. Environ Toxicol Chem 32:627–637. doi: 10.1002/etc.2099 PubMedCrossRefGoogle Scholar
  9. Bethea DM, Hale L, Carlson JK, Cortés E, Manire CA, Gelsleichter J (2007) Latitudinal variation in the diet and daily ration of the bonnethead shark, Sphyrna tiburo, from the eastern Gulf of Mexico.  Mar Biol 152:1009–1020Google Scholar
  10. Betka M, Callard GV (1999) Stage-dependent accumulation of cadmium and induction of metallothionein-like binding activity in the testis of the Dogfish shark, Squalus acanthias. Biol Reprod 60:14–22PubMedCrossRefGoogle Scholar
  11. Bosch AC, Sigge GO, Kerwath SE, Cawthorn DM, Hoffman LC (2013) The effects of gender, size and life-cycle stage on the chemical composition of smoothhound shark (Mustelus mustelus) meat. J Sci Food Agric 93:2384–2392. doi: 10.1002/jsfa.6100 PubMedCrossRefGoogle Scholar
  12. Cambier S, Gonzalez P, Mesmer-Dudons N, Brèthes D, Fujimura M, Bourdineaud JP (2012) Effects of dietary methylmercury on the zebrafish brain: histological, mitochondrial, and gene transcription analyses. Biometals 25:165–180. doi: 10.1007/s10534-011-9494-6 PubMedCrossRefGoogle Scholar
  13. Carlson JK, Parsons GR (1997) Age and growth of the bonnethead shark, Sphyrna tiburo, from northwest Florida, with comments on clinal variation. Environ Biol Fish 50:331–341CrossRefGoogle Scholar
  14. Chen C, Amirbahman A, Fisher N, Harding G, Lamborg C, Nacci D, Taylor D (2008) Methylmercury in marine ecosystems: spatial patterns and processes of production, bioaccumulation, and biomagnification. EcoHealth 5:399–408. doi: 10.1007/s10393-008-0201-1 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chiaverini N, De Ley M (2010) Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radic Res 44:605–613PubMedCrossRefGoogle Scholar
  16. Cho YS, Choi BN, Ha E-M, Kim KH, Kim SK, Kim DS, Nam YK (2005) Shark (Scyliorhinus torazame) metallothionein: cDNA cloning, genomic sequence, and expression analysis. Mar Biotech 7:350–362CrossRefGoogle Scholar
  17. Cortes E, Manire CA, Hueter RE (1996) Diet, feeding habits, and the diel feeding chronology of the bonnethead shark, Sphyrna tiburo, in southwest Florida. Bull Mar Sci 28:353–367Google Scholar
  18. Creti P, Trinchella F, Scudiero R (2010) Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems. Environ Monit Assess 165:321–329PubMedCrossRefGoogle Scholar
  19. Dabrio M, Rodríguez AR, Bordin G, Bebianno MJ, De Ley M, Sestáková I, Vasák M, Nordberg M (2002) Recent developments in quantification methods for metallothionein. J Inorg Biochem 88:123–134PubMedCrossRefGoogle Scholar
  20. De Boeck G, Eyckmans M, Lardon I, Bobbaers R, Sinha AK, Blust (2010) Metal accumulation and metallothionein induction in the spotted dogfish Scyliorhinus canicula. Comp Biochem Physiol A 155:503–508. doi: 10.1016/j.cbpa.2009.12.014 CrossRefGoogle Scholar
  21. Dragun Z, Podrug M, Raspor B (2009) The assessment of natural causes of metallothionein variability in the gills of European chub (Squalius cephalus L.). Comp Biochem Physiol Toxicol Pharmacol 150:209–217. doi: 10.1016/j.cbpc.2009.04.011 CrossRefGoogle Scholar
  22. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983. doi: 10.1021/es305071v PubMedCentralPubMedCrossRefGoogle Scholar
  23. Dufresne J, Cyr DG (1999) Effects of short-term methylmercury exposure on metallothionein I, II and III mRNA levels in the testis and epididymis of the rat. J Androl 20:769–778PubMedGoogle Scholar
  24. Escobar-Sánchez O, Galván-Magaña F, Rosíles-Martínez R (2010) Mercury and selenium bioaccumulation in the smooth hammerhead shark, Sphyrna zygaena Linnaeus, from the Mexican Pacific Ocean. Bull Environ Contam Toxicol 84:488–491. doi: 10.1007/s00128-010-9966-3 PubMedCrossRefGoogle Scholar
  25. Escobar-Sánchez O, Galván-Magaña F, Rosíles-Martínez R (2011) Biomagnification of mercury and selenium in blue shark Prionace glauca from the Pacific Ocean off Mexico. Biol Trace Elem Res 144:550–559. doi: 10.1007/s12011-011-9040-y PubMedCrossRefGoogle Scholar
  26. Gehringer DB, Finkelstein ME, Coale KH, Stephenson M, Geller JB (2013) Assessing mercury exposure and biomarkers in largemouth bass (Micropterus salmoides) from a contaminated river system in California. Arch Environ Contam Toxicol 64:484–493. doi: 10.1007/s00244-012-9838-4 PubMedCrossRefGoogle Scholar
  27. Gelsleichter JJ, Walker CJ (2010) Pollutant exposure and effects on sharks and their relatives. In: Carrier JC, Musick JA, Heithaus MR (eds) Sharks and their relatives II: Biodiversity, adaptive physiology, and conservation. CRC Press, Boca Raton, pp 491–537CrossRefGoogle Scholar
  28. Gonzalez P, Dominique Y, Massabuau JC, Boudou A, Bourdineaud JP (2005) Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ Sci Technol 39:3972–3980PubMedCrossRefGoogle Scholar
  29. Hidalgo J, Flos R (1986a) Dogfish metallothionein I. Purification and characterization and comparison with rat metallothionein. Comp Biochem Physiol C 83:99–103PubMedCrossRefGoogle Scholar
  30. Hidalgo J, Flos R (1986b) Dogfish metallothionein II. Electrophoretic studies and comparison with rat metallothionein. Comp Biochem Physiol C 83:105–109PubMedCrossRefGoogle Scholar
  31. Hidalgo J, Tort L, Flos R (1985) Cd-, Zn-, Cu-binding protein in the elasmobranch Scyliorhinus canicula. Comp Biochem Physiol C 81:159–165PubMedCrossRefGoogle Scholar
  32. Hidalgo J, Bernues J, Thomas DG, Garvey JS (1988) Effect of 2-mercaptoethanol on the electrophoretic behavior of rat and dogfish metallothionein and chromatographic evidence of a naturally occurring metallothionein polymerization. Comp Biochem Physiol C 89:191–196PubMedCrossRefGoogle Scholar
  33. Ho NY, Yang L, Legradi J, Armant O, Takamiya M, Rastegar S, Strähle U (2013) Gene responses in the central nervous system of zebrafish embryos exposed to the neurotoxicant methyl mercury. Environ Sci Technol 47:3316–3325. doi: 10.1021/es3050967 PubMedGoogle Scholar
  34. Hurtado-Banda R, Gomez-Alvarez A, Márquez-Farías JF, Cordoba-Figueroa M, Navarro-García G, Medina-Juárez LA (2012) Total mercury in liver and muscle tissue of two coastal sharks from the northwest of Mexico. Bull Environ Contam Toxicol 88:971–975. doi: 10.1007/s00128-012-0623-x PubMedCrossRefGoogle Scholar
  35. Hylland K, Haux C, Hogstrand C (1995) Immunological characterization of metallothionein in marine and freshwater fish. Mar Environ Res 39:111–115CrossRefGoogle Scholar
  36. Kim MK, Zoh KD (2012) Fate and transport of mercury in environmental media and human exposure. J Prev Med Public Health 45:335–343. doi: 10.3961/jpmph.2012.45.6.335 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kramer KK, Liu J, Choudhuri S, Klaassen CD (1996a) Induction of metallothionein mRNA and protein in murine astrocyte cultures. Toxicol Appl Pharmacol 136:94–100PubMedCrossRefGoogle Scholar
  38. Kramer KK, Zoelle JT, Klaassen CD (1996b) Induction of metallothionein mRNA and protein in primary murine neuron cultures. Toxicol Appl Pharmacol 141(1):1–7PubMedGoogle Scholar
  39. Lombardi-Carlson LA, Cortes E, Parsons GR, Manire CA (2003) Latitudinal variation in life-history traits of bonnethead sharks, Sphyrna tiburo, (Carcharhiniformes: Sphyrnidae) from the eastern Gulf of Mexico. Mar Freshw Res 54:875–883CrossRefGoogle Scholar
  40. Maz-Courrau A, López-Vera C, Galván-Magaña F, Escobar-Sánchez O, Rosíles-Martínez R, Sanjuán-Muñoz A (2012) Bioaccumulation and biomagnification of total mercury in four exploited shark species in the Baja California Peninsula, Mexico. Bull Environ Contam Toxicol 88:129–134. doi: 10.1007/s00128-011-0499-1 PubMedCrossRefGoogle Scholar
  41. Miero CL, Bervoets L, Joosen S, Blust R, Duarte AC, Pereira ME, Pacheco M (2011) Metallothioneins failed to reflect mercury external levels of exposure and bioaccumulation in marine fish—considerations on tissue and species specific responses. Chemosphere 85:114–121. doi: 10.1016/j.chemosphere.2011.05.034 CrossRefGoogle Scholar
  42. Monserrat JM, Martínez PE, Geracitano LA, Amado LL, Martins CM, Pinho GL, Chaves IS, Ferreira-Cravo M, Ventura-Lima J, Bianchini A (2007) Pollution biomarkers in estuarine animals: critical review and new perspectives. Comp Biochem Physiol C: Toxicol Pharmacol 146:221–234Google Scholar
  43. Nam DH, Adams DH, Reyier EA, Basu N (2011) Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red tide event. Environ Monit Assess 176:549–559. doi: 10.1007/s10661-010-1603-4 PubMedCrossRefGoogle Scholar
  44. Nordberg N, Nordberg GF (2009) Metallothioneins: historical development and overview. Met Ions Life Sci 5:1–29CrossRefGoogle Scholar
  45. Oliveira M, Ahmad I, Maria VL, Serafim A, Bebianno MJ, Pacheco M, Santos MA (2010) Hepatic metallothionein concentrations in the golden grey mullet (Liza aurata)—relationship with environmental metal concentrations in a metal-contaminated coastal system in Portugal. Mar Environ Res 69:227–233. doi: 10.1016/j.marenvres.2009.10.012 PubMedCrossRefGoogle Scholar
  46. Pethybridge H, Cossa D, Butler EC (2010) Mercury in 16 demersal sharks from southeast Australia: biotic and abiotic sources of variation and consumer health implications. Mar Environ Res 69:18–26. doi: 10.1016/j.marenvres.2009.07.006 Google Scholar
  47. Quirós L, Piña B, Solé M, Blasco J, López MA, Riva MC, Barceló D, Raldúa D (2007) Environmental monitoring by gene expression biomarkers in Barbus graellsii: laboratory and field studies. Chemosphere 67:1144–1154PubMedCrossRefGoogle Scholar
  48. Rhea DT, Farag AM, Harper DD, McConnell E, Brumbaugh WG (2013) Mercury and selenium concentrations in biofilm, macroinvertebrates, and fish collected in the Yankee Fork of the Salmon River, Idaho, USA, and their potential effects on fish health. Arch Environ Contam Toxicol 64:130–139. doi: 10.1007/s00244-012-9816-x PubMedCrossRefGoogle Scholar
  49. Ronco AM, Arguello G, Suazo M, Llanos MN (2005) Increased levels of metallothionein in placenta of smokers. Toxicology 208:133–139PubMedCrossRefGoogle Scholar
  50. Rotchell JM, Clarke KR, Newton LC, Bird DJ (2001) Hepatic metallothionein as a biomaker for metal contamination: age effects and seasonal variation in European flounders (Pleuronectes flesus) from the Severn Estuary and Bristol Channel. Mar Environ Res 52:151–171PubMedCrossRefGoogle Scholar
  51. Ryvolova M, Krizkova S, Vojtech A, Beklova M, Trnkova L, Hubalek J, Kizek R (2011) Analytical methods for metallothionein detection. Curr Anal Chem 7:243–261Google Scholar
  52. Saijoh K, Kuno T, Shuntoh H, Tanaka C, Sumino K (1989) Molecular cloning of cDNA for rat brain metallothionein-II and regulation of its gene expression. Pharmacol Toxicol 64:464–468PubMedCrossRefGoogle Scholar
  53. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18PubMedCrossRefGoogle Scholar
  54. Sevcikova M, Modra H, Kruzikova K, Zitka O, Hynek D, Adam V, Celechovska O, Kizek R, Svobodova Z (2013) Effect of metals on metallothionein content in fish from Skalka and Želivka reservoirs. Int J Electrochem Sci 8:1650–1663Google Scholar
  55. Shariati F, Shariati S (2011) Review on methods for determination of metallothioneins in aquatic organisms. Biol Trace Elem Res 141:340–366. doi: 10.1007/s12011-010-8740-z PubMedCrossRefGoogle Scholar
  56. Sinaie M, Bastami KD, Ghorbanpour M, Najafzadeh H, Shekari M, Haghparast S (2010) Metallothionein biosynthesis as a detoxification mechanism in mercury exposure in fish, spotted scat (Scatophagus argus). Fish Physiol Biochem 36:1235–1242. doi: 10.1007/s10695-010-9403-x PubMedCrossRefGoogle Scholar
  57. Stefansson ES, Heyes A, Rowe CL (2013) Accumulation of dietary methylmercury and effects on growth and survival in two estuarine forage fish: Cyprinodon variegatus and Menidia beryllina. Environ Toxicol Chem 32:848–856. doi: 10.1002/etc.2130 PubMedCrossRefGoogle Scholar
  58. Storelli MM, Giacominelli-Stuffler R, Marcotrigiano G (2002) Mercury accumulation and speciation in muscle tissue of different species of sharks from Mediterranean Sea, Italy. Bull Environ Contam Toxicol 68:201–210PubMedCrossRefGoogle Scholar
  59. Storelli MM, Ceci E, Storelli A, Marcotrigiano GO (2003) Polychlorinated biphenyl, heavy metal and methylmercury residues in hammerhead sharks: contaminant status and assessment. Mar Pollut Bull 46:1035–1039PubMedCrossRefGoogle Scholar
  60. Tremain DM, Adams DH (2012) Mercury in grouper and sea basses from the Gulf of Mexico: relationships with size, age, and feeding ecology. Trans Am Fish Soc 141:1274–1286CrossRefGoogle Scholar
  61. U.S. Environmental Protection Agency (2001) Water Quality Criterion for the Protection of Human Health: Methylmercury. EPA-823-R-01-001. Office of Science and Technology, Office of Water, U.S. Environmental Protection Agency, Washington, DC 20460Google Scholar
  62. Vélez-Alavez M, Labrada-Martagón V, Méndez-Rodriguez LC, Galván-Magaña F, Zenteno-Savín T (2013) Oxidative stress indicators and trace element concentrations in tissues of mako shark (Isurus oxyrinchus). Comp Biochem Physiol A: Mol Integr Physiol 165:508–514. doi: 10.1016/j.cbpa.2013.03.006 CrossRefGoogle Scholar
  63. Yasutake A, Nakamura M (2011) Induction by mercury compounds of metallothioneins in mouse tissues: inorganic mercury accumulation is not a dominant factor for metallothionein induction in the liver. J Toxicol Sci 36:365–372PubMedCrossRefGoogle Scholar
  64. Yasutake A, Nakano A, Hirayama K (1998) Induction by mercury compounds of brain metallothionein in rats: Hg0 exposure induces long-lived brain metallothionein. Arch Toxicol 72:187–191PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Christina J. Walker
    • 1
  • James Gelsleichter
    • 1
  • Douglas H. Adams
    • 2
  • Charles A. Manire
    • 3
    • 4
  1. 1.Department of BiologyUniversity of North FloridaJacksonvilleUSA
  2. 2.Florida Fish and Wildlife Conservation CommissionFish and Wildlife Research InstituteMelbourneUSA
  3. 3.Mote Marine LaboratorySarasotaUSA
  4. 4.Loggerhead Marinelife CenterJuno BeachUSA

Personalised recommendations