Fish Physiology and Biochemistry

, Volume 40, Issue 3, pp 827–837 | Cite as

Effects of dietary β-1,3/1,6-glucan on the antioxidant and digestive enzyme activities of Pacific red snapper (Lutjanus peru) after exposure to lipopolysaccharides

  • Laura T. Guzmán-Villanueva
  • Felipe Ascencio-Valle
  • María E. Macías-Rodríguez
  • Dariel Tovar-Ramírez


The effect of β-1,3/1,6-glucan, derived from yeast, on growth, antioxidant, and digestive enzyme performance of Pacific red snapper Lutjanus peru before and after exposure to lipopolysaccharides (LPS) was investigated. The β-1,3/1,6-glucan was added to the basal diet at two concentrations (0.1 and 0.2 %). The treatment lasted 6 weeks, with sampling at regular intervals (0, 2, 4, and 6 weeks). At the end of this period, the remaining fish from either control or β-glucan-fed fish were injected intraperitoneally with LPS (3 mg kg−1) or with sterile physiological saline solution (SS) and then sampled at 0, 24, and 72 h. The results showed a significant increase (P < 0.05) in growth performance after 6 weeks of feeding with β-glucan. Superoxide dismutase (SOD) activity in liver was significantly higher in diets containing 0.1 % β-glucan in weeks 4 and 6, compared to the control group. β-Glucan supplementation at 0.1 and 0.2 % significantly increased aminopeptidase, trypsin, and chymotrypsin activity. At 72 h after injection of LPS, we observed a significant increase in catalase activity in liver from fish fed diets supplemented with 0.1 and 0.2 % β-glucan; SOD activity increased in fish fed with 0.1 % β-glucan in relation to those injected with SS. Feed supplemented with β-1,3/1,6-glucan increased growth, antioxidant activity, and digestive enzyme activity in Pacific red snapper.


β-1,3/1,6-Glucan Antioxidant enzymes Digestive enzymes Lutjanus peru Lipopolysaccharides 



The authors thank Patricia Hinojosa Baltazar, Pablo Monsalvo Spencer, Teresa Medina Hernández, Enrique Calvillo Espinoza, and Jorge Angulo Calvillo of CIBNOR for their technical assistance. Mathieu Castex of Lallemand Animal Nutrition, Blagnac, France, provided samples of β-glucan (Fibosel®). Ira Fogel of CIBNOR provided valuable editorial services. Funding was provided by Consejo Nacional de Ciencia y Tecnología (CONACYT grant CB-2010/157763). L.T.G.V. is a recipient of a fellowship (CONACYT grant 35304).


  1. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787. doi: 10.1038/35021228 PubMedCrossRefGoogle Scholar
  2. Ai Q, Mai K, Zhang L, Tan B, Zhang W, Xu W, Li H (2007) Effects of dietary β-1,3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol 22:394–402. doi: 10.1016/j.fsi.2006.06.011 PubMedCrossRefGoogle Scholar
  3. Allen GR (1985) FAO species catalogue snappers of the world. An annotated and illustrated catalogue of Lutjanid species known to date. FAO Fish. Synop. 125, RomeGoogle Scholar
  4. AOAC – Off methods anal (1990). The Association of Official Analytical Chemists, Inc. Publishers, VirginiaGoogle Scholar
  5. Anguiano M, Pohlenz C, Buentello A, Gatlin DM (2012) The effects of prebiotics on the digestive enzymes and gut histomorphology of red drum (Sciaenops ocellatus) and hybrid striped bass (Morone chrysops × M. saxatilis). Br J Nutr 109:623–629. doi: 10.1017/S0007114512001754 PubMedCrossRefGoogle Scholar
  6. Atamanalp M, Yanik T (2003) Alterations in hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to mancozeb. Turk J Vet Anim Sci 27:1213–1217Google Scholar
  7. Bairagi A, Ghosh KS, Sen SK, Ray AK (2002) Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult Int 10:109–121CrossRefGoogle Scholar
  8. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi: 10.1016/0003-2697(71)90370-8 PubMedCrossRefGoogle Scholar
  9. Berg A, Bergh Ø, Fjelldal PG, Hansen T, Juell JE, Nerland A (2006) Animal welfare and fish vaccination effects and side-effects. Fisk Havet 9:1–43Google Scholar
  10. Bergmeyer HV (1974) Methods of enzymatic analysis. In: Phosphatases. Verlag Chemie-Academic Press, New York, pp 56–860Google Scholar
  11. Bradford MM (1976) A rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  12. Brandtzaeg P, Bjerre A, Vstebo R, Brusletto B, Joo GB, Kierulf P (2001) Neisseria meningitidis lipopolysaccharides in human pathology. J Endotoxin Res 7:401–420PubMedGoogle Scholar
  13. Bricknell IR, Dalmo RA (2005) The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol 19:457–472. doi: 10.1016/j.fsi.2005.03.008 PubMedCrossRefGoogle Scholar
  14. Cho YS, Lee SY, Bang IC, Kim DS, Nam YK (2009) Genomic organization and mRNA expression of manganese superoxide dismutase (Mn-SOD) from Hemibarbus mylodon (Teleostei, Cypriniformes). Fish Shellfish Immunol 27:571–576. doi: 10.1016/j.fsi.2009.07.003 PubMedCrossRefGoogle Scholar
  15. Cook MT, Hayball PJ, Hutchinson W, Nowak BF, Hayball JD (2003) Administration of a commercial immunostimulant preparation, EcoActivaTM as a feed supplement enhances macrophage respiratory burst and growth rate of snapper (Pagrus auratus, Sparidae (Bloch and Schneider)) in winter. Fish Shellfish Immunol 14:333–345. doi: 10.1006/fsim2002.0441 PubMedCrossRefGoogle Scholar
  16. Dalmo R, Bøgwald J (2008) β-Glucans as conductors of immune symphonies. Review. Fish Shellfish Immunol 25:384–396. doi: 10.1016/j.fsi.2008.04.008 PubMedCrossRefGoogle Scholar
  17. Del Mar EG, Largman C, Brodick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320. doi: 10.1016/S0003-2697(79)80013-5 CrossRefGoogle Scholar
  18. Del Río ZO, Fajer AE, Almazán RP (2011) Influence of β-glucan on innate and resistance of Lutjanus guttatus an experimental infection of dactylogyrid monogeneans. Parasite Immunol 33:483–494. doi: 10.1111/j.1365-3024.2011.01309.x CrossRefGoogle Scholar
  19. Dimitroglou A, Merrifield DL, Cavervali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production—a Mediterranean perspective. Review. Fish Shellfish Immunol 30:1–16. doi: 10.1016/j.fsi.2010.08.009 PubMedCrossRefGoogle Scholar
  20. Doñate C, Roher N, Balasch JC, Ribas L, Goetz FW, Planas JV, Tort L, MacKenzie S (2007) CD83 expression in sea bream macrophages is a marker for the LPS-induced inflammatory response. Fish Shellfish Immunol 23:877–885. doi: 10.1016/j.fsi.2007.03.016 PubMedCrossRefGoogle Scholar
  21. Douglas LC, Sanders ME (2008) Probiotics and prebiotics in dietetics practice. J Am Diet Assoc 108:510–521. doi: 10.1016/j.jada.2007.12.009 PubMedCrossRefGoogle Scholar
  22. Drabkin DL, Austin JH (1935) Spectrophotometric studies. II: preparations from washed blood cells; nitric oxide hemoglobin and sulphemoglobin. J Biol Chem 112:51–64Google Scholar
  23. Efthimiou S (1996) Dietary intake of β-1,3/1,6 glucans in juvenile dentex (Dentex dentex), Sparidae: effects on growth performance, mortalities and non-specific defense mechanisms. J Appl Ichthyol 12:1–7. doi: 10.1111/j.1439-0426.1996.tb00051 CrossRefGoogle Scholar
  24. Elanger B, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278. doi: 10.1016/0003-9861(61)90145-X CrossRefGoogle Scholar
  25. Engelsma MY, Stet RJM, Schipper H, Verburg-van Kemenade BML (2001) Regulation of interleukin 1 beta RNA expression in common carp, Cyprinus carpio L. Dev Comp Immunol 25:195–203. doi: 10.1016/S0145-305X(00)00059-8 PubMedCrossRefGoogle Scholar
  26. FAO (2006) State of world aquaculture, fish. FAO Tech. Paper No. 500, Rome
  27. FAO (2012) El Estado Mundial de la Pesca y la Acuicultura 2012. Parte I, FAOGoogle Scholar
  28. Gaggìa F, Mattarelli P, Biavati B, Siegumfeldt H (2010) Probiotics and prebiotics in animal feeding for safe food production. Review. Int J Food Microbiol 31:188–192CrossRefGoogle Scholar
  29. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412. doi: 10.1016/j.ijfoodmicro.2010.02.031 PubMedGoogle Scholar
  30. Goetz FW, Iliev DB, McCauley LAR, Liarte CQ, Tort LB, Planas JV, MacKenzie S (2004) Analysis of genes isolated from lipopolysaccharide-stimulated rainbow trout (Oncorhynchus mykiss) macrophages. Mol Immunol 41:1199–1210. doi: 10.1016/j.molimm.2004.06.005 PubMedCrossRefGoogle Scholar
  31. Gutsmann T, Muller M, Carroll SF, MacKenzie RC, Wiese A, Seydel U (2001) Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS induced activation of mononuclear cells. Infect Immun 69:6942–6950. doi: 10.1128/IAI.69.11.6942-6950.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Guttvika A, Paulsen B, Dalmo RA, Espelid S, Lund V, Bøgwald J (2002) Oral administration of lipopolysaccharide to Atlantic salmon (Salmo salar L.) fry. Uptake, distribution, influence on growth and immune stimulation. Aquaculture 214:35–53. doi: 10.1016/S0044-8486(02)00358-7 CrossRefGoogle Scholar
  33. Harikrishnan R, Balasundaram C, Heo MS (2010) Lactobacillus sakei BK19 enriched diet enhances the immunity status and disease resistance to streptococcosis infection in kelp grouper, Epinephelus bruneus. Fish Shellfish Immunol 29:1037–1043. doi: 10.1016/j.fsi.2010.08.017 PubMedCrossRefGoogle Scholar
  34. Huttenhuis HBT, Ribeiro ASP, Bowden TJ, Bavel CV, Taverne-Thiele AJ, Rombout JHWM (2006) The effect of oral stimulation in juvenile carp (Cyprinus carpio L.). Fish Shellfish Immunol 21:261–271. doi: 10.1016/j.fsi.2005.12.002 PubMedCrossRefGoogle Scholar
  35. Iji PA, Saki AA, Tivey DR (2001) Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Anim Feed Sci Technol 89:175–188. doi: 10.1016/S0377-8401(00)00223-6 CrossRefGoogle Scholar
  36. Kiron V (2012) Fish immune system and its nutritional modulation for preventive health care. Anim Feed Sci Technol 173:111–133. doi: 10.1016/j.anifeedsci.2011.12.015 CrossRefGoogle Scholar
  37. Krogdahl A, Hemre GI, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquacult Nutr 11:103–122. doi: 10.1111/j.1365-2095.2004.00327.x CrossRefGoogle Scholar
  38. Kumari J, Sahoo PK (2006a) Dietary immunostimulants influence specific immune response and resistance of healthy and immunocompromised Asian catfish Clarias batrachus to Aeromonas hydrophila infection. Dis Aquat Organ 70:63–70PubMedCrossRefGoogle Scholar
  39. Kumari J, Sahoo PK (2006b) Non-specific immune response of healthy and immunocompromised Asian catfish (Clarias batrachus) to several immunostimulants. Aquaculture 255:133–141. doi: 10.1016/j.aquaculture.2005.12.012 CrossRefGoogle Scholar
  40. Li P, Gatlin DM (2005) Evaluation of prebiotic Grobiotic™ A and brewer’s yeast as dietary supplements for sub-adult hybrid striped bass (Morone chrysops × M. saxatilis) challenged in situ with Mycobacterium marinum. Aquaculture 248:197–205. doi: 10.1016/j.aquaculture.2005.03.005 CrossRefGoogle Scholar
  41. López N, Cuzon G, Gaxiola G, Taboada G, Valenzuela M, Pascual C, Sánchez A, Rosas C (2003) Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture 224:223–243. doi: 10.1016/S0044-8486(03)00214-X CrossRefGoogle Scholar
  42. MacKenzie S, Balasch JC, Novoa B, Ribas L, Roher N, Krasnov A, Figueras A (2008) Comparative analysis of the acute response of the trout, O. mykiss, head kidney to in vivo challenge with virulent and attenuated infectious hematopoietic necrosis virus and LPS-induced inflammation. BMC Genomics 26:9–141. doi: 10.1186/1471-2164-9-141 Google Scholar
  43. Maraux S, Louvard D, Baratti J (1973) The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta 321:282–895. doi: 10.1016/0005-2744(73)90083-1 CrossRefGoogle Scholar
  44. Mc Cord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055Google Scholar
  45. Misra CK, Das BK, Mukherjee SC, Pattnaik P (2006) Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture 255:82–94. doi: 10.1016/j.aquaculture.2005.12.009 CrossRefGoogle Scholar
  46. Muñoz M, Cedeño R, Rodríguez J, van der Knaap WPW, Mialhe E, Bachère E (2000) Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture 191:89–107. doi: 10.1016/S0044-8486(00)00420-8 CrossRefGoogle Scholar
  47. Nayak SK, Swain P, Nanda PK, Dash S, Shukla S, Meher PK, Maiti NK (2008) Effect of endotoxin on the immunity of Indian major carp, Labeo rohita. Fish Shellfish Immunol 24:394–399. doi: 10.1016/j.fsi.2007.09.005 PubMedCrossRefGoogle Scholar
  48. Pedrotti F, Davies S, Merrifield D, Marques M, Fraga A, Mouriño J, Fracalossi, D (2013) The autochthonous microbiota of the freshwater omnivores jundia (Rhamdia quelen) and tilapia (Oreochromis niloticus) and the effect of dietary carbohydrates. Aquacult Res 1–10. doi:  10.1111/are.12195
  49. Reid G (2008) Probiotics and prebiotics, progress and challenges. Int Dairy J 18:969–975. doi: 10.1016/j.idairyj.2007.11.025 CrossRefGoogle Scholar
  50. Ringφ E, Olsen RE (1999) The effect of diet on aerobic bacterial floral associated with intestine of Arctic char, Salvelinus alpinus. L J Appl Microbiol 86:22–28. doi: 10.1046/j.1365-2672.1999.00631.x CrossRefGoogle Scholar
  51. Rodríguez I, Chamorro R, Novoa B, Figeras A (2009) β-Glucan administration enhances disease resistance and some innate immune responses in zebra fish (Danio rerio). Fish Shellfish Immunol 27:369–373. doi: 10.1016/j.fsi.2009.02.007 PubMedCrossRefGoogle Scholar
  52. Saeij JP, Stret RJ, de Vries BJ, Van Muiswinkel WB, Weigertjes GF (2003) Molecular characterization of carp TNF: a link between TNF polymorphism and trypano tolerance. Dev Comp Immunol 27:29–41. doi: 10.1016/S0145-305X(02)00064-2 PubMedCrossRefGoogle Scholar
  53. Sahoo PK, Mukherjee SC (2001) Effect of dietary β-1,3 glucan on immune response and disease resistance of healthy and aflatoxin B1-induced immunocompromised rohu (Labeo rohita Hamilton). Fish Shellfish Immunol 11:683–695. doi: 10.1006/fsim2001.0345 PubMedCrossRefGoogle Scholar
  54. Sarmento A, Marques F, Ellis AE, Afonso A (2004) Modulation of the activity of seabass (Dicentrarchus labrax) head-kidney macrophages by macrophage activating factor(s) and lipopolysaccharide. Fish Shellfish Immunol 16:79–92. doi: 10.1016/S1050-4648(03)00031-7 PubMedCrossRefGoogle Scholar
  55. Sealey WM, Barrows FT, Hang A, Johansen KA, Overturf K, LaPatra SE (2008) Evaluation of the ability of barley genotypes containing different amounts of β-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Anim Feed Sci Technol 141:115–128. doi: 10.1016/j.anifeedsci.2007.05.022 CrossRefGoogle Scholar
  56. Selvaraj V, Sampath K, Sekar V (2005) Administration of yeast glucan enhances survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Fish Shellfish Immunol 19:293–306. doi: 10.1016/j.fsi.2005.01.001 PubMedCrossRefGoogle Scholar
  57. Selvaraj V, Samapath K, Sekar V (2006) Adjuvant and immunostimulatory effect of beta glucan administration in combination with lipopolysaccharide enhances survival and some immune parameters in carp challenged with Aeromonas hydrophila. Vet Immunol Immunopathol 114:15–24. doi: 10.1016/j.vetimm.2006.06.011 PubMedCrossRefGoogle Scholar
  58. Silva-Carrillo Y, Hernández C, Hardy WR, González RB, Castillo VS (2012) The effect of substituting fish meal with soybean meal on growth, feed efficiency, body composition and blood chemistry in juvenile spotted rose snapper Lutjanus guttatus (Steindachner 1869. Aquaculture 364–365:180–185. doi: 10.1016/j.aquaculture.2012.08.007 CrossRefGoogle Scholar
  59. Sinha AK, Kumar V, Makkar HPS, De Boeck G, Becker K (2011) Non-starch polysaccharides and their role in fish nutrition—a review. Food Chem 127:1409–1426. doi: 10.1016/j.foodchem.2011.02.042 CrossRefGoogle Scholar
  60. Swain P, Nayak SK, Nanda PK, Dash S (2008) Biological effects of bacterial lipopolysaccharide (endotoxin) in fish: a review. Fish Shellfish Immunol 25:191–201. doi: 10.1016/j.fsi.2008.04.009 PubMedCrossRefGoogle Scholar
  61. Tovar-Ramírez D, Zambonino J, Cahu C, Gatesoupe FJ, Vázquez J (2004) Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture 234:415–427. doi: 10.1016/j.aquaculture.2009.12.015 CrossRefGoogle Scholar
  62. Uchiyama T (1982) Modulation of immune response by bacterial lipopolysaccharide (LPS): roles of macrophages and T cells in vitro adjuvant effects of LPS on antibody response to T cell dependent and T cell independent antigens. Microbiol Immunol 26:213–225PubMedCrossRefGoogle Scholar
  63. Wang YB, Li JR, Lin J (2008) Probiotics in aquaculture: challenges and outlook. Aquaculture 281:1–4. doi: 10.1016/j.aquaculture.2008.06.002 CrossRefGoogle Scholar
  64. Welker TL, Lim C, Yildrim-Aksoy M, Shelby R, Klesius PH (2007) Immune response and resistance to stress and Edwardsiella ictaluri challenge in channel catfish, Ictalurus punctatus, fed diets containing commercial whole-cell or yeast subcomponents. J World Aquac Soc 38:24–35. doi: 10.1111/j.1749-7345.2006.00070.x CrossRefGoogle Scholar
  65. Whittington R, Lim C, Klesius PH (2005) Effect of dietary β-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia, Oreochromis niloticus. Aquaculture 248:217–225. doi: 10.1016/j.aquaculture.2005.04.013 CrossRefGoogle Scholar
  66. Wiegertjes GF, Stet RJM, Parmentier HK, van Muiswinkel WB (1996) Immunogenetics of disease resistance in fish: a comparative approach. Dev Comp Immunol 20:365–381. doi: 10.1016/S0145-305X(96)00032-8 PubMedCrossRefGoogle Scholar
  67. Xu B, Yanbo W, Li J (2009) Effect of prebiotic xylooligosacharides on growth performances and digestive enzymes activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol Biochem 35:351–357. doi: 10.1007/s10695-008-9248-8 PubMedCrossRefGoogle Scholar
  68. Zou J, Wang T, Hirono I, Aoki T, Inagawa H, Honda T, Soma GI, Ototake M, Nakanishi T, Ellis AE, Secombes CJ (2002) Differential expression of two tumor necrosis factor genes in rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 26:161–172. doi: 10.1016/S0145-305X(01)00058-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Laura T. Guzmán-Villanueva
    • 1
  • Felipe Ascencio-Valle
    • 1
  • María E. Macías-Rodríguez
    • 2
  • Dariel Tovar-Ramírez
    • 1
  1. 1.Centro de Investigaciones Biológicas del Noroeste (CIBNOR)La PazMexico
  2. 2.Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations