Fish Physiology and Biochemistry

, Volume 40, Issue 3, pp 773–785 | Cite as

Changes in digestive enzyme activities during larval development of leopard grouper (Mycteroperca rosacea)

  • R. Martínez-Lagos
  • D. Tovar-Ramírez
  • V. Gracia-López
  • J. P. Lazo


The leopard grouper is an endemic species of the Mexican Pacific with an important commercial fishery and good aquaculture potential. In order to assess the digestive capacity of this species during the larval period and aid in the formulation of adequate weaning diets, this study aimed to characterize the ontogeny of digestive enzymes during development of the digestive system. Digestive enzymes trypsin, chymotrypsin, acid protease, leucine–alanine peptidase, alkaline phosphatase, aminopeptidase N, lipase, amylase and maltase were quantified in larvae fed live prey and weaned onto a formulated microdiet at 31 days after hatching (DAH) and compared with fasting larvae. Enzyme activity for trypsin, lipase and amylase were detected before the opening of the mouth and the onset of exogenous feeding, indicating a precocious development of the digestive system that has been described in many fish species. The intracellular enzyme activity of leucine–alanine peptidase was high during the first days of development, with a tendency to decrease as larvae developed, reaching undetectable levels at the end of the experimental period. In contrast, activities of enzymes located in the intestinal brush border (i.e., aminopeptidase and alkaline phosphatase) were low at the start of exogenous feeding but progressively increased with larval development, indicating the gradual maturation of the digestive system. Based on our results, we conclude that leopard grouper larvae possess a functional digestive system at hatching and before the onset of exogenous feeding. The significant increase in the activity of trypsin, lipase, amylase and acid protease between 30 and 40 DAH suggests that larvae of this species can be successfully weaned onto microdiets during this period.


Mycteroperca rosacea Digestive capacity Larval development Ontogeny 



Thanks to Patricia Hinojosa Baltazar, Jorge Sandoval Soto and Francisco Encarnación Ramírez for the technical support received and to the Ministry of Foreign Affairs of Mexico for the scholarship support provided to R.M. Special thanks go to our institution's English-speaking editor and Miguel Córdoba for proofreading and editing help.


  1. Allen GR, Robertson DR (1998) Peces del Pacifico Oriental Tropical. P-111 CONABIO, Agrupación Sierra Madre y CEMEX. México DF. MéxicoGoogle Scholar
  2. Alvarez-González CA, Cervantes-Trujano M, Tovar-Ramírez D, Conklin DE, Nolasco H, Gisbert E, Piedrahita R (2006) Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiol Biochem Fish 31:83–93Google Scholar
  3. Álvarez-Lajonchere L, Hernández-Molejón OG (2001) Producción de peces estuarinos para un centro en América Latina y El Caribe: Diseño, Operación y Tecnologías. The World Aquaculture Society, Baton Rouge, p 424Google Scholar
  4. Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89PubMedCentralPubMedCrossRefGoogle Scholar
  5. Applebaum SL, Holt AJ (2003) The digestive protease, chymotrypsin, as an indicator of nutritional condition in larval red drum (Sciaenops ocellatus). Mar Biol 142:1159–1167Google Scholar
  6. Ásgeirsson B, Bjarnasson JB (1991) Structural and kinetic properties of chymotrypsin from atlantic cod (Gadus morhua). Comparison with bovine chymotrypsin. Comp Biochem Physiol 99:327–335CrossRefGoogle Scholar
  7. Bessey OA, Lowry SH, Brock MH (1946) A method for the rapid determination of alkaline phosphatase with five cubic milliliters of serum. J Biol Chem 164–321Google Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  9. Cahu CL, Zambonino-Infante J (2001) Substitution of live food by formulated diets in marine fish larvae. Aquaculture 200:161–180CrossRefGoogle Scholar
  10. Cahu CL, Zambonino-Infante J, Peres A, Quazuguel P, Le Gall MM (1998) Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes. Aquaculture 161:479–489CrossRefGoogle Scholar
  11. Cara JB, Moyano FJ, Cárdenas S, Fernández-Díaz C, Yúfera M (2003) Assessment of digestive enzyme activities during larval development of white bream. J Fish Biol 63:48–58CrossRefGoogle Scholar
  12. Cara B, Moyano FJ, Zambonino JL, Fauvel C (2007) Trypsin and chymotrypsin as indicators of nutritional status of post-weaned sea bass larvae. J Fish Biol 70:1798–1808CrossRefGoogle Scholar
  13. Chen BA, Qin JG, Carragher JF, Clarke SM, Kumar MS, Hutchinson WG (2007) Deleterious effects of food restrictions in yellowtail kingfish Seriola lalandi during early development. Aquaculture 271:326–335CrossRefGoogle Scholar
  14. Civera-Cerecedo R, Alvarez-González CA, Moyano-López FJ (2004) Nutrición y alimentación de larvas de peces marinos. In: González M, Cruz Suarez LE, Ricque Marie D, Nieto López Mg, Villareal D, Scholz U (eds) Avances en Nutrición acuícola VII Memorias del VII simposium internacional de nutrición acuícola. Hermosillo, Sonora, México, pp 8–94Google Scholar
  15. Cousin JC, Baudin-Laurencin F, Gabaudan J (1987) Ontogeny of enzymatic activities in fed and fasting turbot, Scophthalmus maximus L. J Fish Biol 30:15–33CrossRefGoogle Scholar
  16. Dahlqvist A (1970) Assay of intestinal disaccharidases. Enzymol Biol Clin 11:52–66Google Scholar
  17. Darias M, Murray H, Gallant J, Douglas S, Yúfera M, Martínez-Rodríguez G (2007) Ontogeny of pepsinogen and gastric proton pump expression in red porgy (Pagrus pagrus): determination of stomach functionality. Aquaculture 270:369–378CrossRefGoogle Scholar
  18. Erlanger B, Kolkowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278PubMedCrossRefGoogle Scholar
  19. Estrada-Godínez JA, Maldonado-García M, Gracia-López V, Carrillo M (2011) Ciclo reproductivo de la cabrilla sardinera Mycteroperca rosacea en la bahía de La Paz México. Ciencias Marinas 37(4):425–441CrossRefGoogle Scholar
  20. Feng S, Li W, Lin H (2008) Characterization and expression of the pepsinogen C gene and determination of pepsin-like enzyme activity from orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol 149:275–284CrossRefGoogle Scholar
  21. Gisbert E, Piedrahita RH, Conklin DE (2004) Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices. Aquaculture 232:455–470CrossRefGoogle Scholar
  22. Govoni JJ, Boehlert GW, Watanabe Y (1986) The physiology of digestion in fish larvae. Environ Biol Fish 16:59–77CrossRefGoogle Scholar
  23. Gracia-López V, Rodríguez-Romero J, Pérez-Ramírez J (2004) Inducción del desove con HCG y desarrollo embrionario y de larvas de cabrilla sardinera, Mycteroperca rosacea (Streets, 1877). Ciencias Marinas 30:279–284Google Scholar
  24. Gracia-López V, Kiewek-Martínez M, Maldonado-García M, Monsalvo-Spencer G, Portillo-Clark G, Civera-Cerecedo R, Linares-Aranda M, Robles-Mungaray M, Mazón-Suástegui M (2005) Larvae and juvenile production of leopard grouper, Mycteroperca rosacea (Streets, 1877). Aquac Res 36:110–112CrossRefGoogle Scholar
  25. Henning SJ, Rubin DC, Shulman RJ (1994) Ontogeny of the intestinal mucosa. In: Johson LR (ed) Physiology of gastrointestinal tract. Raven Press, New York, pp 571–610Google Scholar
  26. Holt GJ, Sun F, Lavens P, Sorgeloos P, Jaspers E, Ollevier F (1991) Lipase activity and total lipid content during early development of red drum Sciaenops ocellatus. In: Lavens P, Sorgeloos P, Jaspers E, Ollevier F (eds) Larvi 1991, Fish and crustacean larviculture symposium, special publication 15. European Aquac Society, pp 30–33Google Scholar
  27. Jia A, Zhang XH (2009) Molecular cloning, characterization and expression analysis of cathepsin D gene from turbot Scophthalmus maximus. Fish Shellfish Immunol 26:606–613PubMedCrossRefGoogle Scholar
  28. Lazo JP, Darias MJ, Gisbert E (2011) Ontogeny of the digestive tract. In: Holt GJ (ed) Larval fish nutrition. Wiley, West Sussex, pp 3–46Google Scholar
  29. Lazo JP, Holt G, Arnold C (2000) Ontogeny of pancreatic enzymes in larval red drum Sciaenops ocellatus. Aquac Nutr 6:183–192CrossRefGoogle Scholar
  30. Lazo JP, Mendoza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205CrossRefGoogle Scholar
  31. Maraux S, Louvard D, Baratti J (1973) The aminopeptidase from hog-intestinal brush border. Biochem Biophys Acta 321:282–295Google Scholar
  32. Martínez I, Moyano FJ, Fernandez-Diaz C, Yufera M (1999) Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis). Fish Physiol Biochem 21:317–323CrossRefGoogle Scholar
  33. Martínez-Lagos R, Gracia-López V (2009) Morphological development and growth patterns of the leopard grouper Mycteroperca rosacea during larval development. Aquac Res 41:120–128CrossRefGoogle Scholar
  34. Mathews KC, Van Holde KE (1998) Bioquimica, 2da edn. McGraw-Hill/Interamericana, MadridGoogle Scholar
  35. Morais S, Cahu C, Zambonino-Infante J, Robin J, Rønnestad I, Dinis MT, Conceição LEC (2004) Dietary TAG source level affect performance and lipase expression in larval sea bass (Dicentrarchus labrax). Lipids 39:449–458PubMedCrossRefGoogle Scholar
  36. Moyano FJ, Diaz M, Alarcon FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130PubMedCrossRefGoogle Scholar
  37. Nicholson JA, Kim YS (1975) A one-step L-amino acid oxidase assay for intestinal peptide hydrolase activity. Anal Biochem 63:110–117CrossRefGoogle Scholar
  38. Péres A, Infante JL, Cahu C (1998) Dietary regulation of activities and mRNA levels of trypsin and amylase in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 19:145–152CrossRefGoogle Scholar
  39. Rainuzzo JR, Reitan KI, Olsen Y (1997) The significance of lipids at early stages of marine fish: a review. Aquaculture 155:105–118CrossRefGoogle Scholar
  40. Reyes-Becerril M, Tovar-Ramírez D, Ascencio-Valle F, Civera-Cerecedo R, Gracia-López V, Barbosa-Solomieu V (2008) Effects of dietary live yeast Debaryomyces hansenii on the immune and antioxidant system in juvenile leopard grouper Mycteroperca rosacea exposed to stress. Aquaculture 280:39–44CrossRefGoogle Scholar
  41. Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179:465–473CrossRefGoogle Scholar
  42. Sargent JR (1995) Origins and functions of egg lipids: Nutritional implications. In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality. Blackwell, OxfordGoogle Scholar
  43. Sveinsdóttir S, Thorarensen H, Gudmundsdóttir A (2006) Involvement of trypsin and chymotrypsin activities in Atlantic cod (Gadus morhua) embryogenesis. Aquaculture 260:307–314CrossRefGoogle Scholar
  44. Toledo-Cuevas EM, Moyano-López FJ, Tovar-Ramírez D, Alvarez-González CA, Strüssmann CA, Martínez-Chávez CC, Martínez-Palacios CA (2011) Development of digestive biochemistry in the initial stages of three cultured atherinopsids. Aquac Res 42:776–786CrossRefGoogle Scholar
  45. Tong XH, Xu SH, Liu QH, Li J, Xia ZZ, Ma DY (2012) Digestive enzyme activities of turbot (Scophthalmus maximus, L.) during early developmental stages under culture condition. Fish Physiol Biochem.38:715–724Google Scholar
  46. Ueberschäer B (1993) Measurement of proteolytic enzyme activity: significance and application in larval fish research. In: Walther BT, Fyhn HJ (eds) Physiological and biochemical aspects of fish development. Univ Bergen, Bergen, NorwayGoogle Scholar
  47. Vega-Villasante F, Nolasco H, Civera R (1993) The digestive enzymes of the Pacific brown shrimp Penaeus californiensis. 1. Properties of amylase activity in the digestive tract. Comp Biochem Physiol 106:547–550CrossRefGoogle Scholar
  48. Versaw W, Cuppett SL, Winters DD, Williams LE (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci 54:232–254CrossRefGoogle Scholar
  49. Zacarías M, Muguet JB, Lazo JP (2006) Proteolytic activity in California halibut larvae, (Paralichthys californicus). J World Aqua Soc 37:175–285CrossRefGoogle Scholar
  50. Zambonino JL, Gisbert E, Sarasquete C, Navarro I, Gutierrez J, Cahu C (2008) Ontogeny and physiology of the digestive system of marine fish larvae. In: feeding and digestive functions of fishes (Oxford & IBH Publishing Co. Pvt. Ltd)Google Scholar
  51. Zambonino-Infante JL, Cahu C (1994) Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 12:399–408CrossRefGoogle Scholar
  52. Zambonino-Infante JL, Cahu C (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol 130:477–487Google Scholar
  53. Zouiten D, Khemis IB, Besbes R, Cahu C (2008) Ontogeny of the digestive tract of thick lipped grey mullet (Chelon labrosus) larvae reared in “mesocosms”. Aquaculture 279:166–172CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. Martínez-Lagos
    • 1
  • D. Tovar-Ramírez
    • 2
  • V. Gracia-López
    • 2
  • J. P. Lazo
    • 3
  1. 1.Centro Universitario Regional del Centro (CURC)Universidad Nacional Autónoma de HondurasComayaguaHonduras
  2. 2.Instituto Politécnico Nacional 195Centro de Investigaciones Biológicas del Noroeste (CIBNOR)La PazMexico
  3. 3.Centro de Investigación Científica y de Educación Superior de Ensenada Baja CaliforniaEnsenadaMexico

Personalised recommendations