Advertisement

Fish Physiology and Biochemistry

, Volume 40, Issue 3, pp 659–671 | Cite as

Effect of dietary lysine on growth, intestinal enzymes activities and antioxidant status of sub-adult grass carp (Ctenopharyngodon idella)

  • Xue-Yin Li
  • Ling Tang
  • Kai Hu
  • Yang Liu
  • Wei-Dan Jiang
  • Jun Jiang
  • Pei Wu
  • Gang-Fu Chen
  • Shu-Hong Li
  • Sheng-Yao Kuang
  • Lin Feng
  • Xiao-Qiu Zhou
Article

Abstract

The dietary lysine requirement of sub-adult grass carp (460 ± 1.5 g) was assessed by feeding diets supplemented with grade levels of lysine (6.6, 8.5, 10.8, 12.9, 15.0 and 16.7 g kg−1 diet) for 56 days. The test diets (28 % CP) contained fish meal, casein and gelatin as sources of intact protein, supplemented with crystalline amino acids. Weight gain (WG), feed intake and feed efficiency were significantly improved with increasing levels of lysine up to 12.9 g kg−1 diet and thereafter declined (P < 0.05). Quadratic regression analysis of WG at 95 % maximum response indicated lysine requirement was 10.9 g kg−1 diet. Activities of trypsin, chymotrypsin, lipase, Na+, K+-ATPase and alkaline phosphatase in intestine, creatine kinase activity in proximal and mid-intestine responded similar to WG (P < 0.05). In addition, lipid and protein oxidation decreased with increasing levels of lysine up to certain values and increased thereafter (P < 0.05); the anti-hydroxyl radical capacity, dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase (GST) activities and glutathione content were increased with increasing dietary lysine levels up to certain values in the detected tissues, except for hepatopancreatic GST. Requirement estimated on the basis of malondialdehyde content in intestine and hepatopancreas was 10.6 and 9.53 g lysine kg−1 diet, respectively.

Keywords

Ctenopharyngodon idella Lysine Growth Digestion Intestinal enzymes activities Antioxidant enzyme 

Notes

Acknowledgments

This research was financially supported by the National Department Public Benefit Research Foundation (Agriculture) of China (201003020) and Science and Technology Support Programme of Sichuan Province (2011NZ0071). The authors would like to thank the personnel of these teams for their kind assistance.

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  2. Ahmed I, Khan MA (2004) Dietary lysine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquaculture 235(1–4):499–511CrossRefGoogle Scholar
  3. Anderson JS, Lall SP, Anderson DM, McNiven MA (1993) Quantitative dietary lysine requirement of Atlantic salmon (Salmo salar) fingerlings. Can J Fish Aquat Sci 50(2):316–322CrossRefGoogle Scholar
  4. AOAC (Association of Official Analytical Chemists) (1998) Official methods of analysis, 16th edn. AOAC, WashingtonGoogle Scholar
  5. Armenteros M, Heinonen M, Ollilainen V, Toldrá F, Estévez M (2009) Analysis of protein carbonyls in meat products by using the DNPH-method, fluorescence spectroscopy and liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS). Meat Sci 83(1):104–112PubMedCrossRefGoogle Scholar
  6. Bauermeister A, Lewendon A, Ramage P, Nimmo I (1983) Distribution and some properties of the glutathione s-transferase and [gamma]-glutamyl transpeptidase activities of rainbow trout. Comp Biochem Phys C 74(1):89–93CrossRefGoogle Scholar
  7. Bergmeyer HU (ed) (1974) Method of enzymatic analysis. Academic Press, New York, pp 2727–2758Google Scholar
  8. Bessey OA, Lowry OH, Brock MJ (1946) A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J Biol Chem 164(1):321–329PubMedGoogle Scholar
  9. Bohne VJB, Hamre K, Arukwe A (2007) Hepatic metabolism, phase I and II biotransformation enzymes in Atlantic salmon (Salmo salar, L.) during a 12 week feeding period with graded levels of the synthetic antioxidant, ethoxyquin. Food Chem Toxicol 45(5):733–746CrossRefGoogle Scholar
  10. Bolzán AD, Brown OA, Goya RG, Bianchi MS (1995) Hormonal modulation of antioxidant enzyme activities in young and old rats. Exp Gerontol 30(2):169–175PubMedCrossRefGoogle Scholar
  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254PubMedCrossRefGoogle Scholar
  12. Carew L, McMurtry J, Alster F (2005) Effects of lysine deficiencies on plasma levels of thyroid hormones, insulin-like growth factors I and II, liver and body weights, and feed intake in growing chickens. Poultry sci 84(7):1045–1050CrossRefGoogle Scholar
  13. Chromiak JA, Antonio J (2002) Use of amino acids as growth hormone-releasing agents by athletes. J Nutr 18(7):657–661CrossRefGoogle Scholar
  14. Cowey C (1995) Protein and amino acid requirements: a critique of methods. J Appl Ichthyol 11(3–4):199–204CrossRefGoogle Scholar
  15. D’apollonia S, Anderson P (1980) Optimal assay conditions for serum and liver glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and sorbitol dehydrogenase from the rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci 37(2):163–169CrossRefGoogle Scholar
  16. Deng DF, Dominy W, Ju ZY, Koshio S, Murashige R, Wilson RP (2010) Dietary lysine requirement of juvenile Pacific threadfin (Polydactylus sexfilis). Aquaculture 308(1):44–48Google Scholar
  17. Dwyer C, Fletcher J, Stickland N (1993) Muscle cellularity and postnatal growth in the pig. J Anim Sci 71(12):3339–3343PubMedGoogle Scholar
  18. Furne M, Hidalgo M, Lopez A, García-Gallego M, Morales A, Domezain A, Domezaine J, Sanz A (2005) Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture 250(1):391–398Google Scholar
  19. Grendell J, Tseng H, Rothman S (1984) Regulation of digestion. I. Effects of glucose and lysine on pancreatic secretion. Am J Physiol-Gastr L 246(4):G445–G450Google Scholar
  20. Gülçin I (2006) Antioxidant and antiradical activities of l-carnitine. Life Sci 78(8):803–811PubMedCrossRefGoogle Scholar
  21. Hafedh YA (1999) Effects of dietary protein on growth and body composition of Nile tilapia, Oreochromis niloticus L. Aquacult Res 30(5):385–393CrossRefGoogle Scholar
  22. Harpaz S (2005) l-Carnitine and its attributed functions in fish culture and nutrition—a review. Aquaculture 249(1):3–21Google Scholar
  23. Hevrøy EM, El-Mowafi A, Taylor RG, Olsvik PA, Norberg B, Espe M (2007) Lysine intake affects gene expression of anabolic hormones in atlantic salmon, Salmo salar. Gen Comp Endocr 152(1):39–46PubMedCrossRefGoogle Scholar
  24. Higgins AD, Silverstein JT, Engles J, Wilson ME, Rexroad CE, Blemings KP (2005) Starvation induced alterations in hepatic lysine metabolism in different families of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 31(1):33–44CrossRefGoogle Scholar
  25. Hofer R, Uddin AN (1985) Digestive processes during the development of the roach, Rutilus rutilus L. J Fish Biol 26(6):683–689CrossRefGoogle Scholar
  26. Hua K (2012) Investigating the appropriate mode of expressing lysine requirement of fish through non-linear mixed model analysis and multilevel analysis. Brit J Nutr 109(6):1013–1021Google Scholar
  27. Hummel BCW (1959) A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J Physiol Pharm 37(12):1393–1399Google Scholar
  28. Jiang J, Zheng T, Zhou XQ, Liu Y, Feng L (2009) Influence of glutamine and vitamin E on growth and antioxidant capacity of fish enterocytes. Aquacult Nutr 15(4):409–414CrossRefGoogle Scholar
  29. Jonas C, Farrell C, Scully S, Eli A, Estivariz C, Gu L, Jones D, Ziegler T (2000) Enteral nutrition and keratinocyte growth factor regulate expression of glutathione-related enzyme messenger RNAs in rat intestine. Jpen-Parenter Enter 24(2):67–75CrossRefGoogle Scholar
  30. Kim K-I, Kayes TB, Amundson CH (1992) Requirements for lysine and arginine by rainbow trout (Oncorhynchus mykiss). Aquaculture 106(3):333–344Google Scholar
  31. Lin YH, Shiau SY (2007) The effects of dietary selenium on the oxidative stress of grouper, Epinephelus malabaricus, fed high copper. Aquaculture 267(1):38–43Google Scholar
  32. Livingstone D, Martinez PG, Michel X, Narbonne J, O’hara S, Ribera D, Winston G (1990) Oxyradical production as a pollution-mediated mechanism of toxicity in the common mussel, Mytilus edulis L., and other molluscs. Funct Ecol 4(3):415–424CrossRefGoogle Scholar
  33. Lora J, Alonso FJ, Segura JA, Lobo C, Márquez J, Matés JM (2004) Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur J Biochem 271(21):4298–4306PubMedCrossRefGoogle Scholar
  34. Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M (2001) Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol-Reg I 280(1):R100–R107Google Scholar
  35. Ma J, Xu Z, Shao Q, Xu J, Hung SS, Hu W, Zhuo L (2008) Effect of dietary supplemental l-carnitine on growth performance, body composition and antioxidant status in juvenile black sea bream, Sparus macrocephalus. Aquacult Nutr 14(5):464–471CrossRefGoogle Scholar
  36. Martínez-Álvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fisher 15(1–2):75–88CrossRefGoogle Scholar
  37. Naz M, Türkmen M (2008) Changes in the digestive enzymes and hormones of gilthead seabream larvae (Sparus aurata, L. 1758) fed on Artemia nauplii enriched with free lysine. Aquacult Int 17(6):523–535Google Scholar
  38. NRC (National Research Council) (1993) Nutrient requirements of fish. National Academies Press, Washington, DCGoogle Scholar
  39. NRC (National Research Council) (2011) Nutrient requirements of fish and shrimp. National Academy Press, WashingtonGoogle Scholar
  40. Pandey S, Ahmad I, Parvez S, Bin-Hafeez B, Haque R, Raisuddin S (2001) Effect of endosulfan on antioxidants of freshwater fish Channa punctatus Bloch: 1. Protection against lipid peroxidation in liver by copper preexposure. Arch Environ Con Tox 41(3):345–352Google Scholar
  41. Ribeiro L, Zambonino-Infante J, Cahu C, Dinis M (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179(1–4):465–473CrossRefGoogle Scholar
  42. Salvatore F, Zappia V, Costa C (1965) Comparative biochemistry of deamination of L-amino acids in elasmobranch and teleost fish. Comp Biochem Phys 16(3):303–309CrossRefGoogle Scholar
  43. Shearer KD (1995) The use of factorial modeling to determine the dietary requirements for essential elements in fishes. Aquaculture 133(1):57–72CrossRefGoogle Scholar
  44. Shireman J, Colle D, Rottmann R (1977) Intensive culture of grass carp, Ctenopharyngodon idella, in circular tanks. J Fish Biol 11(3):267–272CrossRefGoogle Scholar
  45. Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128(3):606–614PubMedGoogle Scholar
  46. Sukhanov S, Higashi Y, Shai SY, Vaughn C, Mohler J, Li Y, Song YH, Titterington J, Delafontaine P (2007) IGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice. Arterioscl Throm Vas 27(12):2684–2690CrossRefGoogle Scholar
  47. Takeuchi T, Ogawa M, Sugimura T (1977) Effects of various hormones and adrenalectomy on the levels of amylase in rat pancreas and parotid gland. CML-Cell Mol Life 33(11):1531–1532CrossRefGoogle Scholar
  48. Tantikitti C, Chimsung N (2001) Dietary lysine requirement of freshwater catfish (Mystus nemurus Cuv. & Val.). Aquac Res 32(s1):135–141Google Scholar
  49. Tanzer ML, Gilvarg C (1959) Creatine and creatine kinase measurement. J Biol Chem 234(12):3201–3204PubMedGoogle Scholar
  50. Tengjaroenkul B, Smith BJ, Caceci T, Smith SA (2000) Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 182(3–4):317–327CrossRefGoogle Scholar
  51. Tian LX, Liu YJ, Hung SSO (2004) Utilization of glucose and cornstarch by juvenile grass carp. N Am J Aquacult 66(2):141–145CrossRefGoogle Scholar
  52. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39(1):44–84CrossRefGoogle Scholar
  53. Van Waarde A (1981) Nitrogen metabolism in goldfish, Carassius auratus (L.): activities of transamination reactions, purine nucleotide cycle and glutamate dehydrogenase in goldfish tissues. Comp Biochem Phys B 68(3):407–413Google Scholar
  54. Vardi N, Parlakpinar H, Ozturk F, Ates B, Gul M, Cetin A, Erdogan A, Otlu A (2008) Potent protective effect of apricot and β-carotene on methotrexate-induced intestinal oxidative damage in rats. Food Chem Toxicol 46(9):3015–3022PubMedCrossRefGoogle Scholar
  55. Walton M, Cowey C, Adron J (1984) The effect of dietary lysine levels on growth and metabolism of rainbow trout (Salmo gairdneri). Br J Nutr 52(1):115–122PubMedCrossRefGoogle Scholar
  56. Wang S, Liu Y-J, Tian L-X, Xie M-Q, Yang H-J, Wang Y, Liang G-Y (2005) Quantitative dietary lysine requirement of juvenile grass carp Ctenopharyngodon idella. Aquaculture 249(1–4):419–429CrossRefGoogle Scholar
  57. Weng CF, Chiang CC, Gong HY, Chen MHC, Lin CJF, Huang WT, Cheng CY, Hwang PP, Wu JL (2002) Acute changes in gill Na+-K+-ATPase and creatine kinase in response to salinity changes in the euryhaline teleost, Tilapia (Oreochromis mossambicus). Physiol Biochem Zool 75(1):29–36PubMedCrossRefGoogle Scholar
  58. Zhang W, Chen Q, Mai K, Xu W, Wang X, Liufu Z (2010) Effects of dietary α-lipoic acid on the growth and antioxidative responses of juvenile abalone Haliotis discus hannai Ino. Aquac Res 41(11):e781–e787CrossRefGoogle Scholar
  59. Zhou XQ, Zhao CR, Lin Y (2007) Compare the effect of diet supplementation with uncoated or coated lysine on juvenile Jian Carp (Cyprinus carpio Var. Jian). Aquacult Nutr 13(6):457–461CrossRefGoogle Scholar
  60. Zhou XQ, Zhao CR, Jiang J, Feng L, Liu Y (2008) Dietary lysine requirement of juvenile Jian carp (cyprinus carpiovar. Jian). Aquacult Nutr 14(5):381–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Xue-Yin Li
    • 1
  • Ling Tang
    • 1
  • Kai Hu
    • 1
  • Yang Liu
    • 1
    • 2
    • 3
  • Wei-Dan Jiang
    • 1
    • 2
    • 3
  • Jun Jiang
    • 1
    • 2
    • 3
  • Pei Wu
    • 1
  • Gang-Fu Chen
    • 1
  • Shu-Hong Li
    • 1
  • Sheng-Yao Kuang
    • 1
    • 4
  • Lin Feng
    • 1
    • 2
    • 3
  • Xiao-Qiu Zhou
    • 1
    • 2
    • 3
  1. 1.Animal Nutrition InstituteSichuan Agricultural UniversityYa’anChina
  2. 2.Fish Nutrition and Safety Production University Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityYa’anChina
  3. 3.Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of EducationSichuan Agricultural UniversityYa’anChina
  4. 4.Animal Nutrition InstituteSichuan Academy of Animal ScienceChengduChina

Personalised recommendations