Advertisement

Fish Physiology and Biochemistry

, Volume 40, Issue 2, pp 571–576 | Cite as

Morphologic study of the liver of lambari (Astyanax altiparanae) with emphasis on the distribution of cytokeratin

  • Chayrra Chehade
  • Mônica Cassel
  • Maria Inês Borella
  • Fabiano Gonçalves Costa
Article

Abstract

Studies on the morphology of the liver of teleosts reflect some controversy in the interpretation of the data, but also provide confirmation of variations in the structure of the organ in several species. Thus, we intend to understand the specific structural organization of the liver of Astyanax altiparanae. Specimens were collected in the city of Andirá, Paraná, Brazil. The livers were processed according to histological routine for inclusion in Paraplast, and the sections were stained with HE and Mallory’s trichrome or followed the protocol for fluorescence immunohistochemistry, anti-cytokeratin. The liver of A. altiparanae was covered by a capsule of connective tissue, without delimiting lobes. The hepatocytes had an arrangement in cords around sinusoids. Melanomacrophage centers were observed. The vascular components and intrahepatic pancreatic acini were distributed between hepatocytes. Presence of cytokeratin was detected in tissues that lined the liver and endothelial cells of sinusoids. The comparison of the liver of A. altiparanae to other characids corroborates with the fact that there is variation in the morphology of the liver even between closely related species. Moreover, it appears that in this species, endothelial cells of sinusoids can synthesize the cytokeratin filaments required for the regulation of blood flow in capillaries in adults.

Keywords

Characidae Immunofluorescence Intrahepatic pancreas Intermediate filaments 

Notes

Acknowledgments

The authors thank Mr. Cruz Alberto Mendoza Rigonati by logistical assistance during the processing of the material of this study.

References

  1. Akiyoshi H, Inoue A (2004) Comparative histological study of teleost livers in relation to phylogeny. Zool Sci 21:841–850PubMedCrossRefGoogle Scholar
  2. Brusle J, Anadon GG (1996) The structure and function of fish liver. In: Munshi JSD, Dutta HM (eds) Fish morphology. Science Publishers, Enfield, pp 77–93Google Scholar
  3. Costa GM, Ortis RC, Lima MG, Casals JB, Lima AR, Kfoury-Jr JR (2012) Estrutura morfológica do fígado de tambaqui Colossoma macropomum (Cuvier, 1818). Pesq Vet Bras 32:947–950CrossRefGoogle Scholar
  4. Coulombe PA (1993) The cellular and molecular biology of keratins: beginning a new era. Curr Opin Cell Biol 5:17–29PubMedCrossRefGoogle Scholar
  5. Eurell JA, Haensly WE (1982) The histology and ultrastructure of the liver of Atlantic croaker Micropogon undulatus L. J Fish Biol 21:113–125CrossRefGoogle Scholar
  6. Fernandes CA, Martins-Santos IC (2004) Cytogenetic studies in two populations of Astyanax altiparanae (Pisces, Characiformes). Hereditas 141:328–332PubMedCrossRefGoogle Scholar
  7. Ferri S, Sesso A (1981) Ultrastrutural study of the endothelial cells in teleost liver sinusoids under normal and experimental conditions. Cell Tissue Res 219:649–657PubMedCrossRefGoogle Scholar
  8. Figueiredo-Fernandes AM, Fontaínhas-Fernandes AA, Monteiro RF, Reis-Henriques MA, Rocha E (2007) Spatial relationships of the intrahepatic vascular-biliary tracts and associated pancreatic acini of Nile tilapia, Oreochromis niloticus (Teleostei, Cichlidae): a serial section study by light microscopy. Ann Anat 189:17–30PubMedCrossRefGoogle Scholar
  9. Flores-Lopes F, Malabarba LR (2007) Alterações histopatológicas observadas no fígado do lambari Astyanax jacuhiensis (Cope, 1894) (Teleostei, Characidae) sob influência de efluentes petroquímicos. Biociências 15:166–172Google Scholar
  10. Garutti V, Britski HA (1997) Descrição de uma espécie nova de Astyanax (Teleostei, Characidae), com mancha umeral horizontalmente ovalada, da bacia do rio Guaporé, Amazônia. Pap Avulsos Zool 40:217–229Google Scholar
  11. Gonzalez G (1992) Contribution à la connaissance des processus iguatérigènes. These de Doctorat (specialite Oceanologie), Universite de PerpignanGoogle Scholar
  12. Gonzalez G, Crespo S, Brusle J (1993) Histo-cytological study of the liver of the cabrilla sea bass, Serranus cabrilla (Teleostei, Serranidae), an available model for marine fish experimental studies. J Fish Biol 43:363–373CrossRefGoogle Scholar
  13. Hampton JA, Lantz RC, Hinton DE (1989) Functional units in rainbow trout (Salmo gairdneri, Richardson) liver: III. Morphometric analysis of parenchyma, stroma and component cell types. Am J Anat 185:58–73PubMedCrossRefGoogle Scholar
  14. He J, Liu Y, He S, Wang Q, Pu H, Ji J (2007) Proteomic analysis of a membrane skeleton fraction form human liver. J Proteome Res 6:3509–3518PubMedCrossRefGoogle Scholar
  15. Health AG (1995) Water pollution and fish physiology. CRC Lewis Publishers, Boca RatónGoogle Scholar
  16. Hinton DE, Couch JA (1998) Architectural pattern, tissue and cellular morphology in livers of fishes: relationship to experimentally induced neoplastic responses. EXS 86:141–164PubMedGoogle Scholar
  17. Hinton DE, Lauren DJ (1990) Liver structural alterations accompanying chronic toxicity in fishes: potential biomarkers of exposure. In: McCarthy JF, Shugart LR (eds) Biomarkers of environmental contamination. CRC Lewis Publishers, Florida, pp 17–57Google Scholar
  18. Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–256PubMedCrossRefGoogle Scholar
  19. Naito M, Hasegawa G, Takahashi K (1997) Development, differentiation, and maturation of Kupffer cells. Microsc Res Tech 39:350–364PubMedCrossRefGoogle Scholar
  20. Petcoff GM, Díaz AO, Escalante AH, Goldemberg AL (2006) Histology of the liver of Oligosarcus jenynsii (Ostariophysi, Characidae) from Los Padres Lale, Argentina. Iheringia (Sér Zool) 96:205–208Google Scholar
  21. Robertson JC, Bradley TM (1992) Liver ultrastructure of juvenile Atlantic salmon (Salmo salar). J Morphol 211:41–54CrossRefGoogle Scholar
  22. Robertson OH, Wexler BC (1960) Histological changes in the organs and tissues of migrating and spawning Pacific salmon (genus Oncorhynchus). Endocrinology 66:222–239PubMedCrossRefGoogle Scholar
  23. Rocha E, Monteiro RAF (1999) Histology and cytology of fish liver: a review. In: Saksena DN (ed) Ichthyology: recent research advances. Science Publishers, Enfield, pp 321–344Google Scholar
  24. Rocha E, Monteiro RAF, Pereira CA (1994) The liver of the brown trout, Salmo trutta fario: a light and electron microscope study. J Anat 185:241–249PubMedCentralPubMedGoogle Scholar
  25. Schar M, Maly IP, Sasse D (1985) Histochemical studies on metabolic zonation of the liver in the trout (Salmo gairdneri). Histochemistry 83:147–151PubMedCrossRefGoogle Scholar
  26. Senda T, Nomura R (2003) The expression of cytokeratin in hepatic stellate cells of the cod. Arch Histol Cytol 66:437–444PubMedCrossRefGoogle Scholar
  27. Shibatta OA, Orsi ML, Bennemann ST, Silva-Souza AT (2002) Diversidade e distribuição de peixes na bacia do rio Tibagi. In: Medri ME, Bianchini E, Shibatta OA, Pimenta JA (eds) A bacia do rio Tibagi. Londrina, pp 399–419Google Scholar
  28. Shin YC (1977) Some observations on the fine structure of lamprey liver as revealed by electron microscopy. Okajima Fol Anat Jap 54:25–60Google Scholar
  29. Shiogiri NS, Paulino MG, Carraschi SP, Baraldi FG, Cruz C, Fernandes MN (2012) Acute exposure of a glyphosate-based herbicide affects the gills and liver of the Neotropical fish, Piaractus mesopotamicus. Environ Toxicol Pharmacol 34:388–396PubMedCrossRefGoogle Scholar
  30. Souza VL, Lunardi LO, Vasques LH, Casaletti L, Nakaghi LSO, Urbinati EC (2001) Morphometric alterations in hepatocytes and ultrastructural distribution of liver glycogen in pacu (Piaractus mesopotamicus Holmberg, 1887) during food restriction and refeeding. Braz J Morphol Sci 18:15–20Google Scholar
  31. Thompson JS, Virtanen I, Lehto VP (1987) Intermediate filaments in normal tissues and lymphomas of northern pike, Esox lucius L., from the Aland Islands of Finland. J Comp Pathol 97:257–266PubMedCrossRefGoogle Scholar
  32. Vicentini CA, Franceschini-Vicentini IB, Bombonato MTS, Bertolluci B, Lima SG, Santos AS (2005) Morphological study of the liver in the teleost Oreochromis niloticus. Int J Morphol 23:211–216Google Scholar
  33. Wake K (1988) Liver perivascular cells revealed by gold and silver impregnation methods and electron microscopy. In: Motta P (ed) Biopathology of the liver, an ultrastructural approach. Kluwer Academic Publisher, Dordrecht, pp 23–26CrossRefGoogle Scholar
  34. Yao Y, Lin J, Yang P, Chen Q, Chu X, Cheng G, Hu J (2012) Fine structure, enzyme histochemistry, and immunohistochemistry of liver in zebrafish. Anat Rec 295:567–576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Chayrra Chehade
    • 1
  • Mônica Cassel
    • 1
  • Maria Inês Borella
    • 1
  • Fabiano Gonçalves Costa
    • 2
  1. 1.Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversidade de Sao PauloSão PauloBrazil
  2. 2.Centre of Biological SciencesUniversidade Estadual do Norte do ParanáBandeirantesBrazil

Personalised recommendations