Fish Physiology and Biochemistry

, Volume 39, Issue 5, pp 1341–1351 | Cite as

Homologue of Sox10 in Misgurnus anguillicaudatus: sequence, expression pattern during early embryogenesis

  • Xiaohua Xia
  • Ping Nan
  • Linxia Zhang
  • Jinsheng Sun
  • Zhongjie Chang


A number of genetic studies have established that Sox10 is a transcription factor associated with neurogenesis in vertebrates. We have isolated a homologue of Sox10 gene from the brain of Misgurnus anguillicaudatus by using homologous cloning and RACE method, designated as MaSox10b. The full-length cDNA of MaSox10b contained a 311 bp 5′UTR, a 312 bp 3′UTR and an ORF encoding a putative protein of 490 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa: 105–183). Phylogenetic tree shows that the MaSOX10b fits within the Sox10 clade and clusters firmly into Sox10b branches. During embryogenesis, MaSox10b was first detected in gastrulae stage. From somitogenesis stage and thereafter, distinct expression was observed in the medial neural tube, extending from the hindbrain through the posterior trunk. Taken together, these preliminary findings suggested that MaSox10b is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis and neurogenesis.


Sox10b HMG-box Misgurnus anguillicaudatus Whole-mount in situ hybridization 



This work is supported by grants from the National Natural Science Foundation of China (No. 31200923), Tianjin Key Laboratory of Animal and Plant Resistance Open Fund (No. 01046651012).


  1. Aoki Y, Saint-Germain N, Gyda M, Magner-Fink E, Lee YH, Credidio C, Saint-Jeannet JP (2003) Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev Biol 259:19–33PubMedCrossRefGoogle Scholar
  2. Bondurand N, Kobetz A, Pingault V, Lemort N, Encha-Razavi F, Couly G, Goerich DE, Wegner M, Abitbol M, Goossens M (1998) Expression of the SOX10 gene during human development. FEBS Lett 432:168–172PubMedCrossRefGoogle Scholar
  3. Chaboissier MC, Kobayashi A, Vidal VIP, Lützkendorf S, Kant HJGV, Wegner M, Rooij DGD, Behringer RR, Schedl A (2004) Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131:1891–1901PubMedCrossRefGoogle Scholar
  4. Chiang EF, Pai CI, Wyatt M, Yan YL, Postlethwait J, Chung B (2001) Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol 231:149–163PubMedCrossRefGoogle Scholar
  5. Cresko WA, Yan YL, Baltrus DA, Amores A, Singer A, Rodriguez-Mari A, Postlethwait JH (2003) Genome duplication, subfunction partitioning, and lineage divergence: Sox9 in stickleback and zebrafish. Dev Dyn 228:480–489PubMedCrossRefGoogle Scholar
  6. Deng SP, Chen SL (2009) cDNA cloning, tissues, embryos and larvae expression analysis of Sox10 in half-smooth tongue-sole, Cynoglossus semilaevis. Mar Genomics 1:109–114CrossRefGoogle Scholar
  7. Dutton KA, Pauliny A, Lopes SS, Elworthy S, Carney TJ, Rauch J, Geisler R, Haffter P, Kelsh RN (2001) Zebrafish colourless encodes sox10 and specifies nonectomesenchymal neural crest fates. Development 128:4113–4125PubMedGoogle Scholar
  8. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait JH (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedGoogle Scholar
  9. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P, Lovell-Badge R (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346:245–250PubMedCrossRefGoogle Scholar
  10. Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, Lemort N, Goossens M, Wegner M (1998) Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA 95:5161–5165PubMedCrossRefGoogle Scholar
  11. Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fishspecific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203PubMedCrossRefGoogle Scholar
  12. Honoré SM, Aybar MJ, Mayor R (2003) Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol 260:79–96Google Scholar
  13. Kelsh RN (2006) Sorting out Sox10 functions in neural crest development. BioEssays 28:788–798PubMedCrossRefGoogle Scholar
  14. Kiefer JC (2007) Back to basics: Sox genes. Dev Dyn 236:2356–2366PubMedCrossRefGoogle Scholar
  15. Koopman P, Schepers G, Brenner S, Venkatesh B (2004) Origin and diversity of the Sox transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene 328:77–186CrossRefGoogle Scholar
  16. Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18:237–250PubMedGoogle Scholar
  17. Liu QY, Lu HJ, Zhang LH, Xie J, Shen WY, Zhang WM (2012) Homologues of sox8 and sox10 in the orange-spotted grouper Epinephelus coioides: sequences, expression patterns, and their effects on cyp19a1a promoter activities in vitro. Comp Biochem Physiol B Biochem Mol Biol 163:86–95PubMedCrossRefGoogle Scholar
  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  19. Maka M, Stolt CC, Wegner M (2005) Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Dev Biol 277:155–169PubMedCrossRefGoogle Scholar
  20. Martino SD, Yan YL, Jowett T, Postlethwait JH, Varga ZM, Ashworth A, Austin CA (2000) Expression of Sox11 gene duplicates in zebrafish suggests the reciprocal loss of ancestral gene expression patterns in development. Dev Dyn 217:279–292PubMedCrossRefGoogle Scholar
  21. Nakamoto M, Suzuki A, Matsuda M, Nagahama Y, Shibata N (2005) Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes. Biochem Biophys Res Commun 333:729–736PubMedCrossRefGoogle Scholar
  22. Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59:169–187PubMedCrossRefGoogle Scholar
  23. Pevny LH, Lovell-Badge R (1997) Sox genes find their feet. Curr Opin Genet Dev 7:338–344PubMedCrossRefGoogle Scholar
  24. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Préhu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Smith JC, Read AP, Wegner M, Goossens M (1998) Sox10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18:171–173PubMedCrossRefGoogle Scholar
  25. Schreiner S, Cossais F, Fischer K, Scholz S, Bosl MR, Holtmann B, Sendtner M, Wegner M (2007) Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development 134:3271–3281PubMedCrossRefGoogle Scholar
  26. Soullier S, Jay P, Poulat F, Vanacker JM, Berta P, Laudet V (1999) Diversification pattern of the HMG and SOX family members during evolution. J Mol Evol 48:517–527PubMedCrossRefGoogle Scholar
  27. Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in DOM Hirschsprung mouse model. Nat Genet 18:60–64PubMedCrossRefGoogle Scholar
  28. Stolt CC, Wegner M (2010) SoxE function in vertebrate nervous system development. Int J Biochem Cell Biol 42:437–440PubMedCrossRefGoogle Scholar
  29. Wegner M (1999) From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 27:1409–1420PubMedCrossRefGoogle Scholar
  30. Wegner M (2005) Secrets to a healthy Sox life: lessons for melanocytes. Pigment Cell Res 18:74–85PubMedCrossRefGoogle Scholar
  31. Wilkinson DG (1992) In situ hybridization, a practical approach. Oxford University Press, OxfordGoogle Scholar
  32. Xia XH, Zhao J, Du QY, Chang ZJ (2010) cDNA cloning and expression analysis of two distinct Sox8 genes in Paramisgurnus dabryanus (Cypriniformes). J Genet 89:183–192PubMedCrossRefGoogle Scholar
  33. Xia XH, Zhao J, Du QY, Chang ZJ (2011) Isolation and expression of two distinct Sox8 genes in mudloach (Misgurnus anguillicaudatus). Biochem Genet 49:161–176PubMedCrossRefGoogle Scholar
  34. Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H, Araki K, Morohashi K, Ozato K (2002) Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev 63:5–16PubMedCrossRefGoogle Scholar
  35. Zhang L, Zhu T, Lin D, Zhang Y, Zhang W (2010) A second form of Sox11 homologue identified in the orange-spotted grouper Epinephelus coioides: analysis of sequence and mRNA expression patterns. Comp Biochem Physiol B Biochem Mol Biol 157:415–422PubMedCrossRefGoogle Scholar
  36. Zhou R, Liu L, Guo Y, Yu H, Cheng H, Huang X, Tiersch TR, Berta P (2003) Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol Reprod Dev 66:211–217PubMedCrossRefGoogle Scholar
  37. Zhou L, Wang Y, Yao B, Li CJ, Ji GD, Gui JF (2005) Molecular cloning and expression pattern of 14 kDa apolipoprotein in orange-spotted grouper, Epinephelus coioides. Comp Biochem Physiol B Biochem Mol Biol 142:432–437PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Xiaohua Xia
    • 1
  • Ping Nan
    • 1
  • Linxia Zhang
    • 1
  • Jinsheng Sun
    • 2
  • Zhongjie Chang
    • 1
  1. 1.Molecular and Genetic Laboratory, College of Life ScienceHenan Normal UniversityXinxiangPeople’s Republic of China
  2. 2.Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinPeople’s Republic of China

Personalised recommendations