Advertisement

Fish Physiology and Biochemistry

, Volume 39, Issue 4, pp 1031–1041 | Cite as

Ameliorating effect of β-carotene on antioxidant response and hematological parameters of mercuric chloride toxicity in Nile tilapia (Oreochromis niloticus)

  • Y. Elseady
  • E. Zahran
Article

Abstract

The impact of different levels of dietary β-carotene to alleviate the effect of mercuric chloride toxicity in Nile tilapia was assessed. Semi-purified diets containing 0, 40, and 100 mg β-carotene kg−1 dry diet were fed for 21 days, which were subjected to sublethal concentration of mercuric chloride (0.05 ppm). Hematological and biochemical parameters, lipid profile, and antioxidant response were examined. All hematological parameters of tilapia fish starting from second week of toxicity were significantly decreased. A significant increasing trend in liver enzymes (ALT and AST) were observed parallel to the time of toxicity and peroxide radicals (MDA) appearing significantly increased in toxicated group without carotene supplement, although carotene supplementation return all parameters within the control levels. Mercury accumulated significantly in fish liver and white muscles in toxicated group while it showed a significant reduction in dietary β-carotene-treated group. Overall, it can be used as immunostimulant and alleviate the suppression effect resulted from immune depressive stressful condition in farmed Nile tilapia.

Keywords

Carotenoid supplemented diet Heavy metal intoxication Fish 

Notes

Acknowledgments

This work was supported by department of physiology and department of Internal medicine, infectious and fish diseases, Faculty of veterinary medicine, Mansoura University.

References

  1. Abu El-Ella SM (1996) Studies on the toxicity and bioconcentration of cadmium on grass carp, Ctenopharyngodon idella. MSc Thesis, Faculty of Science, Helwan UniversityGoogle Scholar
  2. Adel AK (2003) Heavy metal pollution and biomonitoring plants in lake Manzala, Egypt, Pakistan. J Biol Sci 6(13):1108–1117Google Scholar
  3. Affonso EG, Polez VLP, Corrêa CF, Mazon AF, Araújo MRR, Moraes G, Rantin FT (2002) Blood parameters and metabolites in the teleost fish Colossoma macropomum exposed to sulfide or hypoxia. Comp Biochem Physiol C Toxicol Pharmacol 133(3):375–382. doi: 10.1016/s1532-0456(02)00127-8 CrossRefPubMedGoogle Scholar
  4. Ahmed AM, Hussein MM (2004) Residual levels of some heavy metals in fish flesh and water from El-Manzala Lake, Egypt. Journal of King Saud University Agricultural Sciences 16(2):187–196Google Scholar
  5. Allen P (1994) Distribution of mercury in the soft tissues of the blue tilapia <i> Oreochromis aureus </i> (Steindachner) after acute exposure to mercury (II) chloride. Bulletin of Environmental Contamination and Toxicology 53(5):675–683. doi: 10.1007/bf00196939 PubMedGoogle Scholar
  6. Amar EC, Kiron V, Satoh S, Okamoto N, Watanabe T (2000a) Effects of dietary b-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fish Sci 66:1068–1075CrossRefGoogle Scholar
  7. Amar EC, Kiron V, Satoh S, Okamoto N, Watanabe T (2000b) Effects of dietary β-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fish Sci 66(6):1068–1075. doi: 10.1046/j.1444-2906.2000.00170.x CrossRefGoogle Scholar
  8. Amar EC, Kiron V, Satoh S, Watanabe T (2004) Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immunol 16(4):527–537. doi: 10.1016/j.fsi.2003.09.004 CrossRefPubMedGoogle Scholar
  9. APHA (1985) Mercury determination by the cold vapor technique, standard method 303. In: Franson MAH (ed) Standard methods for examination of water and wastewater, 16th edn. American Public Health Association, Washington DCGoogle Scholar
  10. Banerjee BD, Seth V, Bhattacharya A, Pasha ST, Chakraborty AK (1999) Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol Lett 107(1–3):33–47. doi: 10.1016/s0378-4274(99)00029-6 CrossRefPubMedGoogle Scholar
  11. Beena S, Viswaranjan S (1987) Effect of cadmium and mercury on the hematological parameters of the fish Cyprinus carpio. Environment and Ecology 5(4):726–732Google Scholar
  12. Bendich A (1991) β-Carotene and the immune response. Proceedings of the Nutrition Society 50:263–274CrossRefPubMedGoogle Scholar
  13. Benfey TJ, Biron M (2000) Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Aquaculture 184(1–2):167–176. doi: 10.1016/s0044-8486(99)00314-2 CrossRefGoogle Scholar
  14. Berntssen MHG, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 65(1):55–72. doi: 10.1016/s0166-445x(03)00104-8 CrossRefPubMedGoogle Scholar
  15. Berntssen MHG, Hylland K, Julshamn K, Lundebye AK, Waagbø R (2004) Maximum limits of organic and inorganic mercury in fish feed. Aquac Nutr 10(2):83–97. doi: 10.1046/j.1365-2095.2003.00282.x CrossRefGoogle Scholar
  16. Burtis CA, Ashwood ER (eds) (1999) Tietz textbook of clinical chemistry, 3rd edn. Saunders, PhiladelphiaGoogle Scholar
  17. Burton GW, Ingold KU (1984) Beta-carotene: an unusual type of lipid antioxidant. Science 224(4649):569Google Scholar
  18. Carvalho GGA, de França J, Dias D, Lombardi J, de Paiva MJR, Carvalho S, Sarriés G, Ferreira J (2009) Selenite and selenate effects on mercury (Hg 2+) uptake and distribution in Tilapia, Oreochromis niloticus L., assessed by chronic bioassay. Bull Environ Contam Toxicol 82(3):300–304CrossRefPubMedGoogle Scholar
  19. Chien YH, Shiau WC (2005) The effects of dietary supplementation of algae and synthetic astaxanthin on body astaxanthin, survival, growth, and low dissolved oxygen stress resistance of kuruma prawn, Marsupenaeus japonicus Bate. J Exp Mar Biol Ecol 318:201–211CrossRefGoogle Scholar
  20. Christiansen R, Torrissen OJ (1996) Growth and survival of Atlantic salmon, Salmo salar L. fed different dietary levels of astaxanthin. Juveniles Aquaculture Nutrition 2:55–62CrossRefGoogle Scholar
  21. Christiansen R, Glette J, Lie Ø, Torrissen OJ, Waagbø R (1995) Antioxidant status and immunity in Atlantic salmon, Salmo salar L., fed semi-purified diets with and without astaxanthin supplementation. J Fish Dis 18:317–328CrossRefGoogle Scholar
  22. Chung S, Secombes C (1988) Analysis of events occuring within teleost macrophages during the respiratory burst. Comp Biochem Physiol 89B:539–544Google Scholar
  23. Cossu C, Doyotte A, Babut M, Exinger A, Vasseur P (2000) Antioxidant biomarkers in freshwater bivalves, unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicol Environ Saf 45(2):106–121. doi: 10.1006/eesa.1999.1842 CrossRefPubMedGoogle Scholar
  24. de Oliveira Ribeiro CA, Belger L, Pelletier É, Rouleau C (2002) Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus). Environ Res 90(3):217–225. doi: 10.1016/s0013-9351(02)00025-7 CrossRefPubMedGoogle Scholar
  25. Drabkin D (1964) Spectrophotometric studies. XIV. The crystallographic and optical properties of man Hbs in comparison with those of other species. Zh Biol Chim 164:702–723Google Scholar
  26. Elia AC, Galarini R, Taticchi MI, Dörr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55(2):162–167. doi: 10.1016/s0147-6513(02)00123-9 CrossRefPubMedGoogle Scholar
  27. Fernandes D, Bebianno MJ, Porte C (2008) Hepatic levels of metal and metallothioneins in two commercial fish species of the Northern Iberian shelf. Sci Total Environ 391(1):159–167. doi: 10.1016/j.scitotenv.2007.10.057 CrossRefPubMedGoogle Scholar
  28. Fletcher TC, White A (1986) Nephrotoxic and haematological effects of mercuric chloride in the plaice (Pleuronectes platessa L.). Aquat Toxicol 8(2):77–84. doi: 10.1016/0166-445x(86)90054-8 CrossRefGoogle Scholar
  29. Fossati P, Principle L (1982) Estimation of the concentration of triglyceride in plasma and liver. Clin Chem 28:2077–2081Google Scholar
  30. Garewal HS, Ampel NM, Watson RR, Prabhala RH, Dols CL (1992) A preliminary trial of beta-carotene in subjects infected with the human immunodeficiency virus. J Nutr 122:728–732PubMedGoogle Scholar
  31. Ghorpade N, Mehta V, Khare M, Sinkar P, Krishnan S, Rao CV (2002) Toxicity study of diethyl phthalate on freshwater fish cirrhina mrigala. Ecotoxicol Environ Saf 53(2):255–258. doi: 10.1006/eesa.2002.2212 CrossRefPubMedGoogle Scholar
  32. Giari L, Simoni E, Manera M, Dezfuli BS (2008) Histo-cytological responses of Dicentrarchus labrax (L.) following mercury exposure. Ecotoxicol Environ Saf 70(3):400–410. doi: 10.1016/j.ecoenv.2007.08.013 CrossRefPubMedGoogle Scholar
  33. Gill T, Pant J (1985) Mercury-induced blood anomalies in the freshwater teleost. Water Air Soil Pollut 24(2):165–171. doi: 10.1007/bf00285441 CrossRefGoogle Scholar
  34. Gill TS, Pande J, Tewari HM (1991) Effects of endosulfan on the blood and organ chemistry of fresh water fish, Barbus conchonius Hamilton. Ecotoxicol Environ Saf 21:80–91CrossRefPubMedGoogle Scholar
  35. Haschek WM, Walling MA, Rousseaux C (2010) Fundamental of toxicologic pathology, 2nd edn. Academies Press, p 286Google Scholar
  36. Huang ZY, Zhang Q, Chen J, Zhuang ZX, Wang XR (2007) Bioaccumulation of metals and induction of metallo-thioneins in selected tissues of common carp (Cyprinus carpio L.) co-exposed to cadmium, mercury and lead. Appl Organomet Chem 21(2):101–107CrossRefGoogle Scholar
  37. Ishikawa NM, Ranzani-Paiva MJT, Lombardi JV, Ferreira CM (2007) Hematological parameters in Nile Tilápia, Oreochromis niloticus exposed to sub-letal concentrations of mercury. Brazilian Archives of Biology and Technology 50:619–626CrossRefGoogle Scholar
  38. Jahanbin K, Hedayati A, Moini S, Gohari AR, Emam-Djomeh Z, Esposito A, Bagheri T (2012) The first application of a new polysaccharide from Acanthophyllum bracteatum for the health improvement of Atlantic Salmon exposed to mercury chloride. Toxicol Industrial Health 28(4):377–384Google Scholar
  39. Jain NC (1986) Schalman’s veterinary haematology, 4th edn. Lea and Babings, USAGoogle Scholar
  40. Jezierska B, Witeska M (2007) The metal uptake and accumulation in fish living in polluted waters. Soil and water pollution monitoring. Prot Rem 69:107–114Google Scholar
  41. Juneja CJ, Mahajan CL (1983) Hematological and haemopoietic changes in fish Channa punctatus due to mercury pollution in water. Indian J Anim Res 17(2):63–71Google Scholar
  42. Kaoud HA, Mahran KMA, Rezk A, Khalf MA (2012) Bioremediation the toxic effect of mercury on liver histopathology, some hematological parameters and enzymatic activity in Nile tilapia, Oreochromis niloticus. Researcher 4(1):60–69Google Scholar
  43. Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23(1):21–48. doi: 10.3109/10408449309104073 CrossRefPubMedGoogle Scholar
  44. Kumar M, Sharma MK, Kumar A (2005) Spirulina fusiformis: a food supplement against mercury induced hepatic toxicity. J Health Sci 51(4):424–430CrossRefGoogle Scholar
  45. Larose C, Canuel R, Lucotte M, Di Giulio RT (2008) Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp Biochem Physiol C Toxicol Pharmacol 147(2):139–149. doi: 10.1016/j.cbpc.2007.09.002 CrossRefPubMedGoogle Scholar
  46. Low KW, Sin YM (1998) Effects of mercuric chloride and sodium selenite on some immune responses of blue gourami, Trichogaster trichopterus (Pallus). Sci Total Environ 214(1–3):153–164. doi: 10.1016/s0048-9697(98)00061-8 CrossRefPubMedGoogle Scholar
  47. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30. doi: 10.1016/j.aquatox.2010.10.006 CrossRefPubMedGoogle Scholar
  48. Milaeva ER (2006) The role of radical reactions in organomercurials impact on lipid peroxidation. J Inorg Biochem 100(5–6):905–915. doi: 10.1016/j.jinorgbio.2006.02.014 CrossRefPubMedGoogle Scholar
  49. Misra SK, Behera SC (1992) Evaluation of toxic effects of mercuric chloride on hematological parameters of a freshwater fish Channa punctatus (Bloch). Environ Ecol 10(2):394–396Google Scholar
  50. Monteiro D, Rantin F, Kalinin A (2010) Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology 19(1):105–123. doi: 10.1007/s10646-009-0395-1 CrossRefPubMedGoogle Scholar
  51. Moore JW, Ramamoorthy S (1984) Heavy metals in natural waters: applied monitoring and impact assessment. Related information: springer series on environmental managementGoogle Scholar
  52. National Research Council (US). Committee on Animal Nutrition. (1993). Nutrient requirements of fish. National Academies PressGoogle Scholar
  53. O’Connor DV, Fromm PO (1975) The effect of methyl mercury on gill metabolism and blood parameters of rainbow trout. Bull Environ Contam Toxicol 13(4):406–411. doi: 10.1007/bf01721843 CrossRefPubMedGoogle Scholar
  54. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. doi: 10.1016/0003-2697(79)90738-3 CrossRefPubMedGoogle Scholar
  55. Oliveira Ribeiro CA, Pelletier E, Pfeiffer WC, Rouleau C (2000) Comparative uptake, bioaccumulation, and gill damages of inorganic mercury in tropical and Nordic freshwater fish. Environ Res 83(3):286–292. doi: 10.1006/enrs.2000.4056 CrossRefPubMedGoogle Scholar
  56. Rana SVS, Singh R, Verma S (1995) Mercury-induced lipid peroxidation in the liver, kidney, brain and gills of a fresh water fish Channa punctatus. Jpn J Ichthyol 42:255–259Google Scholar
  57. Rao J, Begum G, Pallela R, Usman P, Rao R (2005) Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos. Int J Environ Res Public Health 2(3):478–483CrossRefPubMedGoogle Scholar
  58. Rodríguez-Ariza A, Peinado J, Pueyo C, López-Barea J (1993) Biochemical indicators of oxidative stress in fish from polluted littoral areas. Can J Fish Aquat Sci 50(12):2568–2573. doi: 10.1139/f93-280 CrossRefGoogle Scholar
  59. Sánchez-Chardi A, López-Fuster MJ, Nadal J (2007) Bioaccumulation of lead, mercury, and cadmium in the greater white-toothed shrew, Crocidura russula, from the Ebro Delta (NE Spain): sex- and age-dependent variation. Environ Pollut 145(1):7–14. doi: 10.1016/j.envpol.2006.02.033 CrossRefPubMedGoogle Scholar
  60. Shakoori AR, Iqbal MJ, Mughal AL, Ali S (1994) Biochemical changes induced by inorganic mercury on the lood, liver and muscles of freshwater Chinese grass carp, Ctenopharyngodon idella. J Ecotoxicol Environ Monit 4(2):81–92Google Scholar
  61. Shalaby AME (2000) Sublethal of heavy metals copper, cadmium and zinc alone or in combinations on enzymes activities of common carp (Cyprinus carpio L.). Egypt J Aquat Biol Fish 4(2):229–246Google Scholar
  62. Singer C, Zimmermann S, Sures B (2005) Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum, palladium and rhodium): comparison with lead and cadmium exposures. Aquat Toxicol 75(1):65–75. doi: 10.1016/j.aquatox.2005.07.004 CrossRefPubMedGoogle Scholar
  63. Slaninova A, Smutna M, Modra H, Svobodova Z (2009) A review: oxidative stress in fish induced by pesticides. Neuro Endocrinol Lett 30:2–12PubMedGoogle Scholar
  64. Tachibana K, Yagi M, Hara K, Mishima T, Tsuchimoto M (1997) Effects of feeding of β-carotene-supplemented rotifers on survival and lymphocyte proliferation reaction of fish larvae Japanese parrotfish (Oplegnathus fasciatus) and Spotted parrotfish (Oplegnathus punctatus): preliminary trials. Hydrobiologia 358(1):313–316. doi: 10.1023/a:1003189020623 CrossRefGoogle Scholar
  65. Tacon AGJ (1981) Speculative review of possible carotenoid function in fish. Prog Fish-Culturist 43(4):205–208. http://dx.doi.org/10.1577/1548-8659(1981)43[205:SROPCF]2.0.CO;2Google Scholar
  66. Torres DP, Vieira MA, Ribeiro AS, Curtius AJ (2005) Determination of inorganic and total mercury in biological samples treated with tetramethylammonium hydroxide by cold vapor atomic absorption spectrometry using different temperatures in the quartz cell. J Anal At Spectrom 20(4):289–294Google Scholar
  67. Torrissen OJ (1984) Pigmentation of salmonids: effects of carotenoids in eggs and start-feeding diet on survival and growth rate. Aquaculture 43:185–193CrossRefGoogle Scholar
  68. Torrissen OJ, Christiansen R (1995) Requirements for carotenoids in fish diets. J Appl Ichthyol 11:225–230CrossRefGoogle Scholar
  69. Veena KB, Radhakrishnan CK, Chacko J (1997) Heavy metal induced biochemical effects in an estuarine teleost, vol 26, vol 1. Council of Scientific and Industrial Research, New DelhiGoogle Scholar
  70. Verakunpiriya V, Watanabe K, Mushiake K, Kawano K, Kobayashi T, Hasegawa I (1997) Effect of krill meal supplementation in soft-dry pellets on spawning and quality of egg of yellowtail. Fish Sci 63:433–439Google Scholar
  71. Verlecar XN, Jena KB, Chainy GBN (2007) Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem Biol Interact 167(3):219–226. doi: 10.1016/j.cbi.2007.01.018 CrossRefPubMedGoogle Scholar
  72. Verlecar XN, Jena KB, Chainy GBN (2008) Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures. Chemosphere 71(10):1977–1985CrossRefPubMedGoogle Scholar
  73. Wang Y-J, Chien Y-H, Pan C-H (2006) Effects of dietary supplementation of carotenoids on survival, growth, pigmentation, and antioxidant capacity of characins, Hyphessobrycon callistus. Aquaculture 261(2):641–648. doi: 10.1016/j.aquaculture.2006.08.040 CrossRefGoogle Scholar
  74. Watanabe T, Lee MJ, Mizutani J, Yamada T, Satoh S, Takeuchi T (1991) Effective component of cuttlefish meal and raw krill for improvement of quality of red sea bream Pagrus major eggs. Nippon Suisan Gakkaishi 57:681–694CrossRefGoogle Scholar
  75. Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19(2):137–161. doi: 10.1016/0166-445x(91)90033-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Physiology, College of Veterinary MedicineMansoura UniversityMansouraEgypt
  2. 2.Department of Internal Medicine, Infections and Fish Diseases, College of Veterinary MedicineMansoura UniversityMansouraEgypt

Personalised recommendations