Fish Physiology and Biochemistry

, Volume 39, Issue 4, pp 979–991 | Cite as

The effects of amphetamine injections on feeding behavior and the brain expression of orexin, CART, tyrosine hydroxylase (TH) and thyrotropin releasing hormone (TRH) in goldfish (Carassius auratus)

  • Hélène Volkoff


In this study, the effects of peripheral (intraperitoneal) injections of d-amphetamine on feeding behavior were assessed in goldfish. Compared with the saline-injected group, amphetamine injections decreased food intake at doses ranging from 1 to 75 μg/g, but not 0.5 μg/g, but increased locomotor behavior, as indicated by the increased number of total feeding and non-feeding acts, at doses ranging from 2.5 to 25 μg/g. Amphetamine at high doses inhibited both food intake (at 25, 50 and 75 μg/g) and feeding behavior (at 75 μg/g). In the hypothalamus, the expression of orexin was down-regulated, and both CART 1 and CART 2 expressions were up-regulated in amphetamine-treated fish (50 μg/g) as compared to saline-injected fish, but amphetamine treatment had no effect on either hypothalamic TH or TRH expression. In the telencephalon, amphetamine treatment (50 μg/g) up-regulated CART 1, CART 2 and TH mRNA expressions but had no effect on either orexin or TRH. Our results suggest that, as in mammals, the orexin, CART and TH systems might be involved in amphetamine-induced feeding/locomotor responses in goldfish.


Amphetamine Orexin TH CART TRH Feeding Locomotion Goldfish Food intake mRNA expression 



This work was supported by a Natural Sciences and Engineering Research Council Discovery (DG) to HV. We thank Jason Noseworthy and Craig Barnes for their assistance in obtaining the animals and the reagents.


  1. Abbott M, Volkoff H (2011) Thyrotropin releasing hormone (TRH) in goldfish (Carassius auratus): role in the regulation of feeding and locomotor behaviors and interactions with the orexin system and cocaine- and amphetamine regulated transcript (CART). Horm Behav 59(2):236–245CrossRefPubMedGoogle Scholar
  2. Antoniou K, Kafetzopoulos E, Papadopoulou-Daifoti Z, Hyphantis T, Marselos M (1998) d-amphetamine, cocaine and caffeine: a comparative study of acute effects on locomotor activity and behavioural patterns in rats. Neurosci Biobehav Rev 23(2):189–196CrossRefPubMedGoogle Scholar
  3. Aparecida S, Correa L, Hoffmann A (1999) Effect of drugs that alter alertness and emotionality on the novelty response of a weak electric fish, Gymnotus carapo. Physiol Behav 65(4–5):863–869PubMedGoogle Scholar
  4. Barreiro-Iglesias A, Anadon R, Rodicio MC (2010) New insights on the neuropeptide Y system in the larval lamprey brain: neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities. Neuroscience 167(2):396–413CrossRefPubMedGoogle Scholar
  5. Berman SM, Kuczenski R, McCracken JT, London ED (2008) Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry 14(2):123–142CrossRefPubMedGoogle Scholar
  6. Blevins JE, Chelikani PK, Haver AC, Reidelberger RD (2008) PYY(3–36) induces Fos in the arcuate nucleus and in both catecholaminergic and non-catecholaminergic neurons in the nucleus tractus solitarius of rats. Peptides 29(1):112–119CrossRefPubMedGoogle Scholar
  7. Boelen A, Wiersinga WM, Fliers E (2008) Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 18(2):123–129CrossRefPubMedGoogle Scholar
  8. Bonnavion P, de Lecea L (2010) Hypocretins in the control of sleep and wakefulness. Curr Neurol Neurosci Rep 10(3):174–179CrossRefPubMedGoogle Scholar
  9. Bowyer JF, Frame LT, Clausing P, Nagamoto-Combs K, Osterhout CA, Sterling CR, Tank AW (1998) Long-term effects of amphetamine neurotoxicity on tyrosine hydroxylase mRNA and protein in aged rats. J Pharmacol Exp Ther 286(2):1074–1085PubMedGoogle Scholar
  10. Brunetti L, Di Nisio C, Orlando G, Ferrante C, Vacca M (2005) The regulation of feeding: a cross talk between peripheral and central signalling. Int J Immunopathol Pharmacol 18(2):201–212PubMedGoogle Scholar
  11. Buckley C, MacDonald EE, Tuziak SM, Volkoff H (2010) Molecular cloning and characterization of two putative appetite regulators in winter flounder (Pleuronectes americanus): preprothyrotropin releasing hormone (TRH) and preproorexin (OX). Peptides 31:1737–1747CrossRefPubMedGoogle Scholar
  12. Burnstock G (1958) Saline for fresh-water fish. J Physiol Biochem 41:35–45Google Scholar
  13. Cheng HF, Bhatnagar RF, Long JP (1975) Dopaminergic nature of amphetamine-induced pecking in pigeons. Eur J Pharmacol 33:319–324CrossRefPubMedGoogle Scholar
  14. Cole SO (1978) Brain mechanisms of amphetamine-induced anorexia, locomotion, and stereotypy: a review. Neurosci Biobehav Rev 2(2):89–100CrossRefGoogle Scholar
  15. Colman E (2005) Anorectics on trial: a half century of federal regulation of prescription appetite suppressants. Ann Int Med 143(5):380–385CrossRefPubMedGoogle Scholar
  16. Ervin GN, Schmitz SA, Nemeroff CB, Prange AJ Jr (1981) Thyrotropin-releasing hormone and amphetamine produce different patterns of behavioral excitation in rats. Eur J Pharmacol 72(1):35–43CrossRefPubMedGoogle Scholar
  17. Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M, Saper CB, Scammell TE (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21(5):1656–1662PubMedGoogle Scholar
  18. Grinker JA, Drewnowski A, Enns M, Kissileff H (1980) Effects of d-amphetamine and fenfluramine on feeding patterns and activity of obese and lean Zucker rats. Pharmacol Biochem Behav 12(2):265–275CrossRefPubMedGoogle Scholar
  19. Hanson GR, Jensen M, Johnson M, White HS (1999) Distinct features of seizures induced by cocaine and amphetamine analogs. Eur J Pharmacol 377(2–3):167–173CrossRefPubMedGoogle Scholar
  20. Hara J, Gerashchenko D, Wisor JP, Sakurai T, Xie X, Kilduff TS (2009) Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci 29(12):3705–3714CrossRefPubMedGoogle Scholar
  21. Hnasko TS, Szczypka MS, Alaynick WA, During MJ, Palmiter RD (2004) A role for dopamine in feeding responses produced by orexigenic agents. Brain Res 1023(2):309–318CrossRefPubMedGoogle Scholar
  22. Hotchkiss AJ, Morgan ME, Gibb JW (1979) The long-term effects of multiple doses of methamphetamine on neostriatal tryptophan hydroxylase, tyrosine hydroxylase, choline acetyltransferase and glutamate decarboxylase activities. Life Sci 25(16):1373–1378CrossRefPubMedGoogle Scholar
  23. Hsieh Y-S, Yang S-F, Chen P-N, Chu S-C, Chen C-H, Kuo D-Y (2011) Knocking down the transcript of protein kinase C-lambda modulates hypothalamic glutathione peroxidase, melanocortin receptor and neuropeptide Y gene expression in amphetamine-treated rats. J Psychopharmacol 25(7):982–994CrossRefPubMedGoogle Scholar
  24. Idemudia SF, McMillan DE (1984) Effects of d-amphetamine on spontaneous motor activity in pigeons. Psychopharmacol (Berl) 84:315–317CrossRefGoogle Scholar
  25. Irons TD, MacPhail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32(1):84–90CrossRefPubMedGoogle Scholar
  26. Jaworski JN, Vicentic A, Hunter RG, Kimmel HL, Kuhar MJ (2003) CART peptides are modulators of mesolimbic dopamine and psychostimulants. Life Sci 73(6):741–747CrossRefPubMedGoogle Scholar
  27. Jerzemowska G, Plucinska K, Kulikowski M, Trojniar W, Wrona D (2012) Locomotor response to novelty correlates with the number of midbrain tyrosine hydroxylase positive cells in rats. Brain Res Bull 87(1):94–102CrossRefPubMedGoogle Scholar
  28. Kehoe AS, Volkoff H (2007) Cloning and characterization of neuropeptide Y (NPY) and cocaine and amphetamine regulated transcript (CART) in Atlantic cod (Gadus morhua). Comp Biochem Physiol A: Mol Integr Physiol 146(3):451–461CrossRefGoogle Scholar
  29. Kelly TH, Foltin RW, Fischman MW (1991) The effects of repeated amphetamine exposure on multiple measures of human behavior. Pharmacol Biochem Behav 38(2):417–426CrossRefPubMedGoogle Scholar
  30. Kimmel HL, Thim L, Kuhar MJ (2002) Activity of various CART peptides in changing locomotor activity in the rat. Neuropeptides 36(1):9–12CrossRefPubMedGoogle Scholar
  31. Kintscher U (2012) Reuptake inhibitors of dopamine, noradrenaline, and serotonin. Handb Exp Pharmacol 209:339–347CrossRefPubMedGoogle Scholar
  32. Kobayashi Y, Peterson BC, Waldbieser GC (2008) Association of cocaine- and amphetamine-regulated transcript (CART) messenger RNA level, food intake, and growth in channel catfish. Comp Biochem Physiol A: Mol Integr Physiol 151(2):219–225CrossRefGoogle Scholar
  33. Krasnova IN, Ladenheim B, Hodges AB, Volkow ND, Cadet JL (2011) Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain. PLoS ONE 6(4):e19179CrossRefPubMedGoogle Scholar
  34. Kuo D-Y (2005) Involvement of hypothalamic neuropeptide Y in regulating the amphetamine-induced appetite suppression in streptozotocin diabetic rats. Regul Pept 127(1–3):19–26CrossRefPubMedGoogle Scholar
  35. Larsen PJ, Hunter RG (2006) The role of CART in body weight homeostasis. Peptides 27(8):1981–1986CrossRefPubMedGoogle Scholar
  36. Lett BT, Grant VL (1989) The hedonic effects of amphetamine and pentobarbital in goldfish. Pharmacol Biochem Behav 32(1):355–356CrossRefPubMedGoogle Scholar
  37. Lin MT, Chan HK, Chen CF, Teh GW (1983) Involvement of both opiate and catecholaminergic receptors in the behavioural excitation provoked by thyrotropin-releasing hormone: comparisons with amphetamine. Neuropharmacol 22(4):463–469CrossRefGoogle Scholar
  38. Lopez JM, Dominguez L, Moreno N, Morona R, Joven A, Gonzalez A (2009) Distribution of orexin/hypocretin immunoreactivity in the brain of the Lungfishes Protopterus dolloi and Neoceratodus forsteri. Brain Behav Evol 74(4):302–322CrossRefPubMedGoogle Scholar
  39. Maximino C, Herculano AM (2010) A review of monoaminergic neuropsychopharmacology in zebrafish. Zebrafish 7(4):359–378CrossRefPubMedGoogle Scholar
  40. Mok EYM, Munro AD (1998) Effects of dopaminergic drugs on locomotor activity in teleost fish of the genus Oreochromis (Cichlidae): involvement of the telencephalon. Physiol Behav 64(3):227–234CrossRefPubMedGoogle Scholar
  41. Mori T, Ito S, Kuwaki T, Yanagisawa M, Sakurai T, Sawaguchi T (2010) Monoaminergic neuronal changes in orexin deficient mice. Neuropharmacology 58(4–5):826–832CrossRefPubMedGoogle Scholar
  42. Muller CP, Carey RJ, Huston JP, De Souza Silva MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81(3):133–178CrossRefPubMedGoogle Scholar
  43. Munro AD (1986) The effects of apomorphine, d-amphetamine and chlorpromazine on the aggressiveness of isolated Aequidens pulcher (Teleostei, Cichlidae). Psychopharmacol (Berl) 88(1):124–128CrossRefGoogle Scholar
  44. Murashita K, Kurokawa T (2011) Multiple cocaine- and amphetamine-regulated transcript (CART) genes in medaka, Oryzias latipes: cloning, tissue distribution and effect of starvation. Gen Comp Endocrinol 170(3):494–500CrossRefPubMedGoogle Scholar
  45. Murashita K, Kurokawa T, Ebbesson LO, Stefansson SO, Ronnestad I (2009) Characterization, tissue distribution, and regulation of agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) in Atlantic salmon (Salmo salar). Gen Comp Endocrinol 162(2):160–171CrossRefPubMedGoogle Scholar
  46. Nakamachi T, Matsuda K, Maruyama K, Miura T, Uchiyama M, Funahashi H, Sakurai T, Shioda S (2006) Regulation by orexin of feeding behaviour and locomotor activity in the goldfish. J Neuroendocrinol 18(4):290–297CrossRefPubMedGoogle Scholar
  47. Nakamura T, Uramura K, Nambu T, Yada T, Goto K, Yanagisawa M, Sakurai T (2000) Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res 873(1):181–187CrossRefPubMedGoogle Scholar
  48. Ninkovic J, Bally-Cuif L (2006) The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39(3):262–274CrossRefPubMedGoogle Scholar
  49. Nishio SI, Gibert Y, Berekelya L, Bernard L, Brunet F, Guillot E, Le Bail JC, Sanchez JA, Galzin AM, Triqueneaux G, Laudet V (2012) Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner. Mol Endocrinol doi: 10.1210/me.2011-1180
  50. Oganesyan GA, Romanova IV, Aristakesyan EA, Kuzik VV, Makina DM, Morina IY, Khramenkova AE, Artamokhina IV, Belova VA (2009) The dopaminergic system of the telencephalon-diencephalic areas of the vertebrate brain in the organization of the sleep-waking cycle. Neurosci Behav Physiol 39(8):805–817CrossRefPubMedGoogle Scholar
  51. Park SW, He Z, Shen X, Roman RJ, Ma T (2012) Differential action of methamphetamine on tyrosine hydroxylase and dopamine transport in the nigrostriatal pathway of u-opioid receptor knockout mice. Int J Neurosci 122(6):305–313CrossRefPubMedGoogle Scholar
  52. Parker MO, Millington ME, Combe FJ, Brennan CH (2012) Development and implementation of a three-choice serial reaction time task for zebrafish (Danio rerio). Behav Brain Res 227(1):73–80CrossRefPubMedGoogle Scholar
  53. Peterson BC, Waldbieser GC, Riley LG Jr, Upton KR, Kobayashi Y, Small BC (2012) Pre- and postprandial changes in orexigenic and anorexigenic factors in channel catfish (Ictalurus punctatus). Gen Comp Endocrinol 176(2):231–239CrossRefPubMedGoogle Scholar
  54. Porrino LJ, Lucignani G, Dow-Edwards D, Sokoloff L (1984) Correlation of dose-dependent effects of acute amphetamine administration on behavior and local cerebral metabolism in rats. Brain Res 307(1–2):311–320CrossRefPubMedGoogle Scholar
  55. Presley GM, Lonergan W, Chu J (2010) Effects of amphetamine on conditioned place preference and locomotion in the male green tree frog, Hyla cinerea. Brain Behav Evol 75(4):262–270CrossRefPubMedGoogle Scholar
  56. Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF (2006) Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26(51):13400–13410CrossRefPubMedGoogle Scholar
  57. Puskas N, Papp RS, Gallatz K, Palkovits M (2010) Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice. Peptides 31(8):1589–1597CrossRefPubMedGoogle Scholar
  58. Quarta D, Valerio E, Hutcheson DM, Hedou G, Heidbreder C (2010) The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus accumbens and decreases the expression of amphetamine sensitization. Neurochem Int 56(1):11–15CrossRefPubMedGoogle Scholar
  59. Robinson TE, Yew J, Paulson PE, Camp DM (1990) The long-term effects of neurotoxic doses of methamphetamine on the extracellular concentration of dopamine measured with microdialysis in striatum. Neurosci Lett 110(1–2):193–198CrossRefPubMedGoogle Scholar
  60. Rodgers RJ, Halford JC, Nunes de Souza RL, Canto de Souza AL, Piper DC, Arch JR, Blundell JE (2000) Dose-response effects of orexin-A on food intake and the behavioural satiety sequence in rats. Regul Pept 96(1–2):71–84CrossRefPubMedGoogle Scholar
  61. Rodgers RJ, Holch P, Tallett AJ (2010) Behavioural satiety sequence (BSS): separating wheat from chaff in the behavioural pharmacology of appetite. Pharmacol Biochem Behav 97(1):3–14CrossRefPubMedGoogle Scholar
  62. Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ (2008) CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurosci 9(10):747–758CrossRefPubMedGoogle Scholar
  63. Rusyniak DE, Zaretsky DV, Zaretskaia MV, Durant PJ, Dimicco JA (2012) The orexin-1 receptor antagonist SB-334867 decreases sympathetic responses to a moderate dose of methamphetamine and stress. Physiol Behav. doi: 10.1016/j.physbeh.2012.02.010
  64. Salas C, Navarro F, Torres B, Delgadogarcia JM (1992) Effects of diazepam and d-amphetamine on rhythmic pattern of eye-movements in goldfish. NeuroReport 3(2):131–134CrossRefPubMedGoogle Scholar
  65. Schuhler S, Warner A, Finney N, Bennett GW, Ebling FJ, Brameld JM (2007) Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters. J Neuroendocrinol 19(4):239–249CrossRefPubMedGoogle Scholar
  66. Shirayama Y, Chaki S (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 4(4):277–291CrossRefPubMedGoogle Scholar
  67. Spielewoy C, Biala G, Roubert C, Hamon M, Betancur C, Giros B (2001) Hypolocomotor effects of acute and daily d-amphetamine in mice lacking the dopamine transporter. Psychopharmacol 159(1):2–9CrossRefGoogle Scholar
  68. Steiner MA, Lecourt H, Jenck F (2012) The dual orexin receptor antagonist almorexant, alone and in combination with morphine, cocaine and amphetamine, on conditioned place preference and locomotor sensitization in the rat. Int J Neuropsychopharmacol. doi: 10.1017/S1461145712000193
  69. Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69:628–649CrossRefPubMedGoogle Scholar
  70. Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75(6):406–433CrossRefPubMedGoogle Scholar
  71. Szczypka MS, Mandel RJ, Donahue BA, Snyder RO, Leff SE, Palmiter RD (1999) Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice. Neuron 22(1):167–178CrossRefPubMedGoogle Scholar
  72. Tachibana T, Takagi T, Tomonaga S, Ohgushi A, Ando R, Denbow DM, Furuse M (2003) Central administration of cocaine- and amphetamine-regulated transcript inhibits food intake in chicks. Neurosci Lett 337(3):131–134CrossRefPubMedGoogle Scholar
  73. Takeichi T, Wang EL, Kitamura O (2012) The effects of low-dose methamphetamine pretreatment on endoplasmic reticulum stress and methamphetamine neurotoxicity in the rat midbrain. Leg Med (Tokyo) 14(2):69–77CrossRefGoogle Scholar
  74. Taylor JA, Boyd SK (1991) Thyrotropin-releasing hormone facilitates display of reproductive behavior and locomotor behavior in an amphibian. Horm Behav 25(2):128–136CrossRefPubMedGoogle Scholar
  75. Tor-Agbidye J, Yamamoto B, Bowyer JF (2001) Seizure activity and hyperthermia potentiate the increases in dopamine and serotonin extracellular levels in the amygdala during exposure to d-amphetamine. Toxicol Sci 60(1):103–111CrossRefPubMedGoogle Scholar
  76. Towell A, Muscat R, Willner P (1988) Behavioural microanalysis of the role of dopamine in amphetamine anorexia. Pharmacol Biochem Behav 30(3):641–648CrossRefPubMedGoogle Scholar
  77. Tseng LF, Loh HH (1974) Significance of dopamine receptor activity in dl-p-methoxyamphetamine- and d-amphetamine-induced locomotor activity. J Pharmacol Exp Therap 189(3):717–724Google Scholar
  78. Tsujino N, Sakurai T (2009) Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 61(2):162–176CrossRefPubMedGoogle Scholar
  79. Ushijima I, Mizuki Y, Hara T, Watanabe K, Hirano H, Yamada M, Glavin GB (1986) Effects of acute and long-term treatments with thyrotropin-releasing hormone on locomotor activity and jumping behavior in mice. Pharmacol Biochem Behav 24(5):1423–1428CrossRefPubMedGoogle Scholar
  80. Volkoff H (2012) Sleep and orexins in nonmammalian vertebrates. Vitam Horm 89:315–339CrossRefPubMedGoogle Scholar
  81. Volkoff H, Peter RE (2000) Effects of CART peptides on food consumption, feeding and associated behaviors in the goldfish, Carassius auratus: actions on neuropeptide Y- and orexin A-induced feeding. Brain Res 887(1):125–133CrossRefPubMedGoogle Scholar
  82. Volkoff H, Peter RE (2001a) Characterization of two forms of cocaine- and amphetamine-regulated transcript (CART) peptide precursors in goldfish: molecular cloning and distribution, modulation of expression by nutritional status, and interactions with leptin. Endocrinol 142(12):5076–5088CrossRefGoogle Scholar
  83. Volkoff H, Peter RE (2001b) Interactions between orexin A, NPY and galanin in the control of food intake of the goldfish, Carassius auratus. Regul Pept 101(1–3):59–72CrossRefPubMedGoogle Scholar
  84. Volkoff H, Bjorklund JM, Peter RE (1999) Stimulation of feeding behavior and food consumption in the goldfish, Carassius auratus, by orexin-A and orexin-B. Brain Res 846(2):204–209CrossRefPubMedGoogle Scholar
  85. Volz TJ, Fleckenstein AE, Hanson GR (2007) Methamphetamine-induced alterations in monoamine transport: implications for neurotoxicity, neuroprotection and treatment. Addiction 102(Suppl 1):44–48CrossRefPubMedGoogle Scholar
  86. Vucetic Z, Reyes TM (2010) Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. Wiley Interdiscip Rev Syst Biol Med 2(5):577–593CrossRefPubMedGoogle Scholar
  87. Wan Y, Zhang Y, Ji P, Li Y, Xu P, Sun X (2012) Molecular characterization of CART, AgRP, and MC4R genes and their expression with fasting and re-feeding in common carp (Cyprinus carpio). Mol Biol Rep 39(3):2215–2223CrossRefPubMedGoogle Scholar
  88. Wellman PJ, Davis KW, Clifford PS, Rothman RB, Blough BE (2009) Changes in feeding and locomotion induced by amphetamine analogs in rats. Drug Alcohol Depend 100(3):234–239CrossRefPubMedGoogle Scholar
  89. White W, Sherrill LK, White IM (2007) Time-dependent effects of amphetamine on feeding in rats. Brain Res 1171(1):75–82CrossRefPubMedGoogle Scholar
  90. Winrow CJ, Tanis KQ, Reiss DR, Rigby AM, Uslaner JM, Uebele VN, Doran SM, Fox SV, Garson SL, Gotter AL, Levine DM, Roecker AJ, Coleman PJ, Koblan KS, Renger JJ (2010) Orexin receptor antagonism prevents transcriptional and behavioral plasticity resulting from stimulant exposure. Neuropharmacology 58(1):185–194CrossRefPubMedGoogle Scholar
  91. Wong AO, Chang JP, Peter RE (1993) Interactions of somatostatin, gonadotropin-releasing hormone, and the gonads on dopamine-stimulated growth hormone release in the goldfish. Gen Comp Endocrinol 92(3):366–378CrossRefPubMedGoogle Scholar
  92. Yamanaka A, Muraki Y, Ichiki K, Tsujino N, Kilduff TS, Goto K, Sakurai T (2006) Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J Neurophysiol 96(1):284–298CrossRefPubMedGoogle Scholar
  93. Yang Z-J, Meguid MM, Chai J-K, Chen C, Oler A (1997) Bilateral hypothalamic dopamine infusion in male zucker rat suppresses feeding due to reduced meal size. Pharmacol Biochem Behav 58(3):631–635CrossRefPubMedGoogle Scholar
  94. Yang S-C, Pan J-T, Li H-Y (2004) CART peptide increases the mesolimbic dopaminergic neuronal activity: a microdialysis study. Eur J Pharmacol 494(2–3):179–182CrossRefPubMedGoogle Scholar
  95. Zhang M, Han L, Xu Y (2012) Roles of cocaine- and amphetamine-regulated transcript in the central nervous system. Clin Exp Pharmacol Physiol 39(6):586–592CrossRefPubMedGoogle Scholar
  96. Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83(7):1197–1209CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Departments of Biology and BiochemistryMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations