Skip to main content
Log in

Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study examined ammonia, urea, creatinine, protein, nitrite, nitrate, and phosphorus (P) excretion at different water hardness, humic acid, or pH levels in silver catfish (Rhamdia quelen) juveniles. The fish were exposed to different levels of water hardness (4, 24, 50, or 100 mg L−1 CaCO3), humic acid (0, 2.5, or 5.0 mg L−1), or pH (5.0, 6.0, 7.0, 8.0, or 9.0) for 10 days. The overall measured nitrogen excretions were 88.1 % (244–423 μmol kg−1 h−1) for ammonia, 10.9 % (30–52 μmol kg−1 h−1) for creatinine, 0.02 % (0.05–0.08 μmol kg−1 h−1) for protein, 0.001 % (0.002–0.004 μmol kg−1 h−1) for urea, 0.5 % (0.64–3.6 μmol kg−1 h−1) for nitrite, and 0.5 % (0.0–6.9 μmol kg−1 h−1) for nitrate, and these proportions were not affected by water hardness or humic acid levels. The overall P excretion in R. quelen was 0.14–2.97 μmol kg−1 h−1. Ammonia excretion in R. quelen usually was significantly higher in the first 12 h after feeding, and no clear effect of water hardness, humic acid levels, and pH on this daily pattern of ammonia excretion could be observed. Water hardness only affected the ammonia and P excretion of R. quelen juveniles in the initial and fifth days after transfer, respectively. The exposure of this species to humic acid increased ammonia excretion after 10 days of exposure but did not affect P excretion. An increase in pH decreased ammonia and increased creatinine excretion but did not change P excretion in R. quelen. Therefore, when there is any change on humic acid levels or pH in the culture of this species, nitrogenous compounds must be monitored because their excretion rates are variable. On the other hand, P excretion rates determined in the present study are applicable to a wide range of fish culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altinok I, Grizzle JM (2004) Excretion of ammonia and urea by phylogenetically diverse fish species in low salinities. Aquaculture 238:499–507. doi:10.1016/j.aquaculture.2004.06.020

    Article  CAS  Google Scholar 

  • Antes FG, Duarte FA, Mesko MF, Nunes MAG, Pereira VA, Müller EI, Dressler VL, Flores EMM (2010) Determination of toxic elements in coal by ICP-MS after digestion using microwave-induced combustion. Talanta 83:364–369. doi:10.1016/j.talanta.2010.09.030

    Article  CAS  PubMed  Google Scholar 

  • APHA (American Public Health Association) (1999) Standard methods for examination of water and wastewater. 20th edn. 1155p. Springfield, Bru-El Graphic

  • Baldisserotto B, Neto JR, Barcellos LG (2010) Jundiá (Rhamdia sp). In: Baldisserotto B, Gomes LC (eds) Espécies nativas para piscicultura no Brasil. UFSM, Santa Maria, pp 301–333

    Google Scholar 

  • Ballestrazzi R, Lanari D, D’Agaro E (1998) Performance, nutrient retention efficiency, total ammonia and reactive phosphorus excretion of growing European sea-bass (Dicentrarchus labrax, L.) as affected by diet processing and feeding level. Aquaculture 161:55–65. doi:10.1016/S0044-8486(97)00256-1

    Article  CAS  Google Scholar 

  • Bolner KCS, Baldisserotto B (2007) Water pH and urinary excretion in silver catfish Rhamdia quelen. J Fish Biol 70:50–64. doi:10.1111/j.1095-8649.2006.01253.x

    Article  CAS  Google Scholar 

  • Boyd CE, Tucker CS (1992) Water quality and pond soil analyses for aquaculture. Auburn University, Auburn, 183 pp

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Bucking C, Wood CM (2008) The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout. J Exp Bio 211:2533–2541. doi:10.1242/jeb.015610

    Article  CAS  Google Scholar 

  • Chew SF, Wilson JM, Ip YK, Randall DJ (2005) Nitrogenous excretion and defense against ammonia toxicity. In: Val A, Almeida-Val V, Randall DJ (eds) Fish physiology: the physiology of tropical fishes. Academic Press, New York, pp 307–395

    Chapter  Google Scholar 

  • Colt J (2002) List of spreadsheets prepared as a complement. In: Wedemeyer GA (ed) Fish hatchery management, 2nd ed. American Fish Society Publication. http://www.fisheries.org/afs/hatchery.html. Accessed 20 December 2011

  • Copatti CE, Garcia LO, Cunha MA, Baldisserotto B, Kochhann D (2011) Interaction of water hardness and pH on growth of silver catfish, Rhamdia quelen, juveniles. J World Aquaculture Soc 42:580–585. doi:10.1111/j.1749-7345.2011.00501.x

    Article  Google Scholar 

  • Danulat E (1995) Biochemical-physiological adaptations of teleosts to highly alkaline, saline lakes. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Environmental and ecological biochemistry, Elsevier Science, pp 229–249

    Google Scholar 

  • Dosdat A, Servais F, Metailler R, Huelvan C, Desbruyeres E (1996) Comparison of nitrogenous losses in five teleost fish species. Aquaculture 141:107–127. doi:10.1016/S0044-8486(95)01209-5

    Article  Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Springfield

    Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177. doi:10.1152/physrev.00050.2003

    Article  CAS  PubMed  Google Scholar 

  • Frances J, Nowak BF, Allan GL (2000) Effects of ammonia on juvenile silver perch (Bidyanus bidyanus). Aquaculture 183:95–103. doi:10.1016/S0044-8486(99)00286-0

    Article  CAS  Google Scholar 

  • Garcia LO, Braun N, Becker AG, Loro VL, Baldisserotto B (2012) Ammonia excretion of silver catfish at different life stages. Acta Scientiarium Animal Sci 34:15–19. doi:10.4025/acrascianimsci.v34i1.11898

    CAS  Google Scholar 

  • Gomes LC, Golombieski JI, Chippari-Gomes AR, Baldisserotto B (2000) Biologia do jundiá – Rhamdia quelen (Teleostei, Pimelodidae). Ciência Rural 30:179–185. doi:101590/S0103-8478000000100029

    Article  Google Scholar 

  • Gonzales RJ, Wood CM, Wilson RW, Patrick MJ, Bergman HL, Narahara A, Val AL (1998) Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon. Physiol Zool 71:15–22. doi:101086/515893

    Article  Google Scholar 

  • Ip YK, Chew SF, Wilson JM, Randall DJ (2004) Defenses against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review. J Comp Physiol 174:565–575. doi:10.1007/s00360-004-0445-1

    CAS  Google Scholar 

  • Ismiño-Orbe RA, Araujo-Lima CARM, Gomes LC (2003) Excreção de amônia por tambaqui (Colossoma macropomum) de acordo com variações na temperatura da água e massa do peixe. Pesquisa Agropecuária Brasileira 38:1243–1247. doi:10.1590/S0100-204X2003001000015

    Article  Google Scholar 

  • Jobling MS (1981) Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice Pleuronectes platessa L. J Fish Biol 18:87–96. doi:10.1111/j.1095-8649.1981.tb03763.x

    Article  CAS  Google Scholar 

  • Kajimura M, Croke SJ, Glover CN, Wood CM (2004) Dogmas and controversies in the handling of nitrogenous wastes: the effect of feeding and fasting on the excretion of ammonia, urea and other nitrogenous waste products in rainbow trout. J Exp Biol 207:1993–2002. doi:10.1242/jeb.00901

    Article  CAS  PubMed  Google Scholar 

  • Lam SS, Jusoh A, Law AT (2008) Waste excretion of marble goby (Oxyeleotris marmorata Bleeker) fed with different diets. Aquaculture 274:49–56. doi:10.1016/j.aquaculture.2007.11.023

    Article  CAS  Google Scholar 

  • Laurent P, Wilkie MP, Chevalier C, Wood CM (2000) The effect of highly alkaline water (pH 9.5) on the morphology and morphometry of chloride cells and pavement cells in the gills of the freshwater rainbow trout: relationship to ionic transport and ammonia excretion. Can J Zool 78:307–319. doi:10.1139/z99-207

    Article  Google Scholar 

  • Lazzari R, Baldisserotto B (2008) Nitrogen and phosphorus waste in fish farming. Boletim do Instituto de Pesca 34:591–600. http://www.pbct.inweb.org.br/pbct/researcher/1649/. Accessed 15 April 2012

  • Leung KMY, Chu JCW, Wu RSS (1999) Effects of body weight, water temperature and ration size on ammonia excretion by aerolated grouper (Epinephelus areolatus,) and mangrove snapper (Lutjanus argentimaculatus). Aquaculture 170:215–227. doi:10.1016/S0044-8486(98)00404-9

    Google Scholar 

  • Matsuo AYO, Val AL (2007) Acclimation to humic substances prevents whole body sodium loss and stimulates branchial calcium uptake capacity in card in al tetra Paracheirodon axelrodi (Schultz) subjected to extremely low pH. J Fish Biol 70:989–1000. doi:10.1111/j.1095-8649.2007.01358.x

    Article  CAS  Google Scholar 

  • McCarthy JJ, Whitledge TE (1972) Nitrogen excretion by anchovy (Engraulis mordax) and jack mackerel (Trachurus symmetricus). Fisheries Bulletin 70:395–401

    Google Scholar 

  • McGeer JC, Wright PA, Wood CM, Wilkie MP, Mazur CF, Iwana GK (1994) Nitrogen excretion in four species of fish from an alkaline lake. Trans Am Fish Soc 112:824–829. doi:10.1577/1548-8659(1994)123<0824:NNEIFS>2.3.CO;2

    Article  Google Scholar 

  • Miron DS, Moraes B, Becker AG, Crestani M, Spanevello R, Loro VL, Baldisserotto B (2008) Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 277:192–196. doi:10.1016/j.aquaculture.2008.02.023

    Article  CAS  Google Scholar 

  • Miron DS, Becker AG, Loro VL, Baldisserotto B (2011) Waterborne ammonia and silver catfish, Rhamdia quelen: survival and growth. Ciência Rural 41:349–353. doi:10.1590/S0103-84782011000200028

    Article  Google Scholar 

  • Oliva-Paterna FJ, García-Alonso J, Cardozo V, Torralva M (2007) Field studies of ammonia excretion in Aphanius iberus (Pisces; Cyprinodontidae): body size and habitat effect. J Appl Ichthyol 23:93–98. doi:10.1111/j.1439-0426.2006.00791.x

    Article  CAS  Google Scholar 

  • Parra JEG, Baldisserotto B (2007) Effect of water pH and hardness on survival and growth of freshwater teleosts. In: Baldisserotto B, Mancera JM, Kapoor BG (eds) Fish osmoregulation. Science Publishers, New Hampshire, pp 135–150

    Chapter  Google Scholar 

  • Piaia R, Townsend CR, Baldisserotto B (1999) Growth and survival of fingerlings of Rhamdia quelen exposed to different photoperiods. Aquacult Int 7:201–205. doi:10.1023/A:1009299830102

    Article  Google Scholar 

  • Rahmatullah M, Boyde TRC (1980) Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clin Chim Acta 107:3–9. doi:10.1016/0009-8981(80)90407-6

    Article  CAS  PubMed  Google Scholar 

  • Riche M, Brown PB (1996) Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 142:269–282. doi:10.1016/0044-8486(95)01218-4

    Article  Google Scholar 

  • Roy PK, Lall SP (2004) Urinary phosphorus excretion in haddock, Melanogrammus aeglefinus (L.) and Atlantic salmon, Salmo salar (L.). Aquaculture 233:369–382. doi:10.1016/S0990-7440(98)89007-4

    Article  CAS  Google Scholar 

  • Salama A, Morgan IJ, Wood CM (1999) The linkage between Na+ uptake and ammonia excretion in rainbow trout: kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion and the influence of gill boundary layer pH. J Exp Biol 202:697–709. http://jeb.biologists.org/content/202/6/697.long. Accessed 13 April 2012

  • Scott DM, Wilson RW (2007) Three species of fishes from an eutrophic, seasonally alkaline lake are not more tolerant to acute exposure to high pH in the laboratory. J Fish Biol 70:551–566. doi:10.1111/j.1095-8649.2007.01329.x

    Article  CAS  Google Scholar 

  • Scott DM, Lucas MC, Wilson RW (2005) The effect of high pH on ion balance, nitrogen excretion and behaviour in freshwater fish from an eutrophic lake: a laboratory and field study. Aquat Toxicol 73:31–43. doi:10.1016/j.aquatox.2004.12.013

    Article  CAS  PubMed  Google Scholar 

  • Smith HW (1929) The excretion of ammonia and urea by the gills of fish. J Biol Chem 81:727–742. http://www.jbc.org/content/81/3/727.full.pdf+html. Acessed 21 June 2012

    Google Scholar 

  • Steinberg CEW, Kamara S, Prokhotskaya VY, Ianas LM, Karasyova TA, Timofeyev MA, Jie Z, Paul A, Meinelt T, Farjalla VF, Matsuo AYO, Burnison BK, Menzel R (2006) Dissolved humic substances: ecological driving forces from the individual to the ecosystem level? Freshw Biol 51:1189–1210. doi:10.1111/j.1365-2427.2006.01571.x

    Article  CAS  Google Scholar 

  • Tantikitti C, Sangpong W, Chiavareesajja S (2005) Effects of defatted soybean protein levels on growth performance and nitrogen and phosphorus excretion in Asian seabass (Lates calcarifer). Aquaculture 248:41–50. doi:10.1016/j.aquaculture.2005.04.027

    Article  CAS  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil, p 188

  • Tng YYM, Wee NLJ, Ip YK, Chew SF (2008) Postprandial nitrogen metabolism and excretion in juvenile marble goby, Oxyeleotris marmorata (Bleeker, 1852). Aquaculture 284:260–267. doi:10.1016/j.aquaculture.2008.07.039

    Article  CAS  Google Scholar 

  • Tomasso JR, Goudie CA, Simco BA, Davis KB (1980) Effects of environmental pH and calcium on ammonia toxicity in channel catfish. Trans Am Fish Soc 109:229–234. doi:10.1577/1548-8659(1980)109<229:EOEPAC>2.0.CO;2

    Article  CAS  Google Scholar 

  • Townsend CR, Baldisserotto B (2001) Survival of silver catfish juveniles exposed to acute changes of water pH and hardness. Aquacult Int 9:413–419. doi:10.1023/A:102059222686

    Article  CAS  Google Scholar 

  • van Weerd JH, Verastegui AM, Tijssen PAT (1995) Nitrogen excretion and determination of nitrogen and energy budgets in rainbow trout (Oncorhynchus mykiss R.) under different feeding regimes. J Appl Ichthyol 11:322–328. doi:10.1111/j.1439-0426.1995.tb00034.x

    Article  Google Scholar 

  • Verdouw H, Van Echteld CJA, Dekkers EMJ (1978) Ammonia determination based on indophenols formation with sodium salicylate. Water Res 12:399–402. doi:10.1016/0043-1354(78)90107-0

    Article  CAS  Google Scholar 

  • Weihrauch D, Wilkie MP, Walsh PJ (2009) Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol 212:1716–1730. doi:10.1242/jeb.036103

    Article  CAS  PubMed  Google Scholar 

  • Wicks BJ, Randall DJ (2002) The effect of sub-lethal ammonia exposure on fed and unfed rainbow trout: the role of glutamine in regulation of ammonia. Comp Biochem Physiol Part A 132:275–285. doi:10.1016/S1095-6433(02)00034-X

    Article  CAS  Google Scholar 

  • Wilkie MP (2002) Ammonia excretion and urea handling by the fish gills: present understanding and future research challenges. J Exp Zool 293:284–301. doi:10.1002/jez.10123

    Article  CAS  PubMed  Google Scholar 

  • Wilkie MP, Wood CM (1995) Recovery from high pH exposure in the rainbow trout: white muscle ammonia storage, ammonia washout, and the restoration of blood chemistry. Physiological Zoology 68:379–401. http://www.jstor.org/stable/30163775. Accessed 13 April 13 2012

  • Wilkie MP, Simmons HE, Wood CM (1996) Physiological adaptations of rainbow trout to chronically elevated water pH (pH 9.5). J Exp Zool 274:1–14. doi:10.1002/(SICI)1097-010X(19960101)274:1<1:AID-JEZ1>3.0.CO;2

    Article  Google Scholar 

  • Wilson JM, Iwata K, Iwama GK, Randall DJ (1998) Inhibition of ammonia excretion and production in rainbow trout during severe alkaline exposure. Comp Biochem Physiol B-Biochem Mol Biol 121:99–109. doi:10.1016/S0305-0491(98)10063-9

    Article  Google Scholar 

  • Wood CM (1993) Ammonia and urea metabolism and excretion. In: Evans D (ed) The physiology of fishes. CRC Press, Boca Raton, pp 379–425

    Google Scholar 

  • Wood CM (2001) Toxic responses of the gill. In: Schlenk D, Benson WH (eds) Target organ toxicity in marine and freshwater teleosts organs. Taylor and Francis, London, pp 1–89

    Google Scholar 

  • Wood CM, Matsuo AYO, Wilson RW, Gonzalez RJ, Patrick ML, Playle RC, Val AL (2003) Protection by natural blackwater against disturbances in ion fluxes caused by low pH exposure in freshwater stingrays endemic to the Rio Negro. Physiol Biochem Zool 76:12–27. doi:10.1086/367946

    Article  PubMed  Google Scholar 

  • Wood CM, Iftikar FI, Scott GR, De Boeck G, Sloman KA, Matey V, Domingos FXV, Duarte RM, Almeida-Val VMF, Val AL (2009) Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): new angles to the osmorespiratory compromise. J Exp Biol 212:1949–1964. doi:10.1242/jeb.028464

    Article  CAS  PubMed  Google Scholar 

  • Wright PA, Wood CM (1985) An analysis of branchial ammonia excretion in the fresh water rainbow trout: effects of environmental pH change and sodium uptake blockade. J Exp Biol 114:329–353. http://jeb.biologists.org/content/114/1/329.full.pdf+html. Accessed 13 April 2012

  • Wright PA, Wood CM (2009) A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J Exp Biol 212:2303–2312. doi:10.1242/jeb.023085

    Article  CAS  PubMed  Google Scholar 

  • Wright PA, Randall DJ, Perry SF (1989) Fish gill water boundary layer: a site of linkage between carbon dioxide and ammonia excretion. J Comp Physiol B 158:627–635. doi:10.1007/BF00693000

    Article  Google Scholar 

  • Zall DM, Fisher MD, Garner QM (1956) Photometric determination of chlorides in water. Anal Chem 28:1665–1678. doi:10.1021/ac60119a009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B. Baldisserotto received a CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Baldisserotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golombieski, J.I., Koakoski, G., Becker, A.J. et al. Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels. Fish Physiol Biochem 39, 837–849 (2013). https://doi.org/10.1007/s10695-012-9744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9744-8

Keywords

Navigation