Advertisement

Fish Physiology and Biochemistry

, Volume 39, Issue 4, pp 837–849 | Cite as

Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels

  • Jaqueline Ineu Golombieski
  • Gessi Koakoski
  • Alessandra Janaína Becker
  • Ana Paula Gottlieb Almeida
  • Cândida Toni
  • Isabela Andres Finamor
  • Maria Amália Pavanato
  • Tielle Moraes de Almeida
  • Bernardo Baldisserotto
Article

Abstract

This study examined ammonia, urea, creatinine, protein, nitrite, nitrate, and phosphorus (P) excretion at different water hardness, humic acid, or pH levels in silver catfish (Rhamdia quelen) juveniles. The fish were exposed to different levels of water hardness (4, 24, 50, or 100 mg L−1 CaCO3), humic acid (0, 2.5, or 5.0 mg L−1), or pH (5.0, 6.0, 7.0, 8.0, or 9.0) for 10 days. The overall measured nitrogen excretions were 88.1 % (244–423 μmol kg−1 h−1) for ammonia, 10.9 % (30–52 μmol kg−1 h−1) for creatinine, 0.02 % (0.05–0.08 μmol kg−1 h−1) for protein, 0.001 % (0.002–0.004 μmol kg−1 h−1) for urea, 0.5 % (0.64–3.6 μmol kg−1 h−1) for nitrite, and 0.5 % (0.0–6.9 μmol kg−1 h−1) for nitrate, and these proportions were not affected by water hardness or humic acid levels. The overall P excretion in R. quelen was 0.14–2.97 μmol kg−1 h−1. Ammonia excretion in R. quelen usually was significantly higher in the first 12 h after feeding, and no clear effect of water hardness, humic acid levels, and pH on this daily pattern of ammonia excretion could be observed. Water hardness only affected the ammonia and P excretion of R. quelen juveniles in the initial and fifth days after transfer, respectively. The exposure of this species to humic acid increased ammonia excretion after 10 days of exposure but did not affect P excretion. An increase in pH decreased ammonia and increased creatinine excretion but did not change P excretion in R. quelen. Therefore, when there is any change on humic acid levels or pH in the culture of this species, nitrogenous compounds must be monitored because their excretion rates are variable. On the other hand, P excretion rates determined in the present study are applicable to a wide range of fish culture conditions.

Keywords

Ammonia Acidic water Alkaline water Waterborne calcium Humic substance 

Notes

Acknowledgments

B. Baldisserotto received a CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) research fellowship.

References

  1. Altinok I, Grizzle JM (2004) Excretion of ammonia and urea by phylogenetically diverse fish species in low salinities. Aquaculture 238:499–507. doi: 10.1016/j.aquaculture.2004.06.020 CrossRefGoogle Scholar
  2. Antes FG, Duarte FA, Mesko MF, Nunes MAG, Pereira VA, Müller EI, Dressler VL, Flores EMM (2010) Determination of toxic elements in coal by ICP-MS after digestion using microwave-induced combustion. Talanta 83:364–369. doi: 10.1016/j.talanta.2010.09.030 CrossRefPubMedGoogle Scholar
  3. APHA (American Public Health Association) (1999) Standard methods for examination of water and wastewater. 20th edn. 1155p. Springfield, Bru-El GraphicGoogle Scholar
  4. Baldisserotto B, Neto JR, Barcellos LG (2010) Jundiá (Rhamdia sp). In: Baldisserotto B, Gomes LC (eds) Espécies nativas para piscicultura no Brasil. UFSM, Santa Maria, pp 301–333Google Scholar
  5. Ballestrazzi R, Lanari D, D’Agaro E (1998) Performance, nutrient retention efficiency, total ammonia and reactive phosphorus excretion of growing European sea-bass (Dicentrarchus labrax, L.) as affected by diet processing and feeding level. Aquaculture 161:55–65. doi: 10.1016/S0044-8486(97)00256-1 CrossRefGoogle Scholar
  6. Bolner KCS, Baldisserotto B (2007) Water pH and urinary excretion in silver catfish Rhamdia quelen. J Fish Biol 70:50–64. doi: 10.1111/j.1095-8649.2006.01253.x CrossRefGoogle Scholar
  7. Boyd CE, Tucker CS (1992) Water quality and pond soil analyses for aquaculture. Auburn University, Auburn, 183 ppGoogle Scholar
  8. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  9. Bucking C, Wood CM (2008) The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout. J Exp Bio 211:2533–2541. doi: 10.1242/jeb.015610 CrossRefGoogle Scholar
  10. Chew SF, Wilson JM, Ip YK, Randall DJ (2005) Nitrogenous excretion and defense against ammonia toxicity. In: Val A, Almeida-Val V, Randall DJ (eds) Fish physiology: the physiology of tropical fishes. Academic Press, New York, pp 307–395CrossRefGoogle Scholar
  11. Colt J (2002) List of spreadsheets prepared as a complement. In: Wedemeyer GA (ed) Fish hatchery management, 2nd ed. American Fish Society Publication. http://www.fisheries.org/afs/hatchery.html. Accessed 20 December 2011
  12. Copatti CE, Garcia LO, Cunha MA, Baldisserotto B, Kochhann D (2011) Interaction of water hardness and pH on growth of silver catfish, Rhamdia quelen, juveniles. J World Aquaculture Soc 42:580–585. doi: 10.1111/j.1749-7345.2011.00501.x CrossRefGoogle Scholar
  13. Danulat E (1995) Biochemical-physiological adaptations of teleosts to highly alkaline, saline lakes. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Environmental and ecological biochemistry, Elsevier Science, pp 229–249Google Scholar
  14. Dosdat A, Servais F, Metailler R, Huelvan C, Desbruyeres E (1996) Comparison of nitrogenous losses in five teleost fish species. Aquaculture 141:107–127. doi: 10.1016/S0044-8486(95)01209-5 CrossRefGoogle Scholar
  15. Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, SpringfieldGoogle Scholar
  16. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177. doi: 10.1152/physrev.00050.2003 CrossRefPubMedGoogle Scholar
  17. Frances J, Nowak BF, Allan GL (2000) Effects of ammonia on juvenile silver perch (Bidyanus bidyanus). Aquaculture 183:95–103. doi: 10.1016/S0044-8486(99)00286-0 CrossRefGoogle Scholar
  18. Garcia LO, Braun N, Becker AG, Loro VL, Baldisserotto B (2012) Ammonia excretion of silver catfish at different life stages. Acta Scientiarium Animal Sci 34:15–19. doi: 10.4025/acrascianimsci.v34i1.11898 Google Scholar
  19. Gomes LC, Golombieski JI, Chippari-Gomes AR, Baldisserotto B (2000) Biologia do jundiá – Rhamdia quelen (Teleostei, Pimelodidae). Ciência Rural 30:179–185. doi: 101590/S0103-8478000000100029 CrossRefGoogle Scholar
  20. Gonzales RJ, Wood CM, Wilson RW, Patrick MJ, Bergman HL, Narahara A, Val AL (1998) Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon. Physiol Zool 71:15–22. doi: 101086/515893 CrossRefGoogle Scholar
  21. Ip YK, Chew SF, Wilson JM, Randall DJ (2004) Defenses against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review. J Comp Physiol 174:565–575. doi: 10.1007/s00360-004-0445-1 Google Scholar
  22. Ismiño-Orbe RA, Araujo-Lima CARM, Gomes LC (2003) Excreção de amônia por tambaqui (Colossoma macropomum) de acordo com variações na temperatura da água e massa do peixe. Pesquisa Agropecuária Brasileira 38:1243–1247. doi: 10.1590/S0100-204X2003001000015 CrossRefGoogle Scholar
  23. Jobling MS (1981) Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice Pleuronectes platessa L. J Fish Biol 18:87–96. doi: 10.1111/j.1095-8649.1981.tb03763.x CrossRefGoogle Scholar
  24. Kajimura M, Croke SJ, Glover CN, Wood CM (2004) Dogmas and controversies in the handling of nitrogenous wastes: the effect of feeding and fasting on the excretion of ammonia, urea and other nitrogenous waste products in rainbow trout. J Exp Biol 207:1993–2002. doi: 10.1242/jeb.00901 CrossRefPubMedGoogle Scholar
  25. Lam SS, Jusoh A, Law AT (2008) Waste excretion of marble goby (Oxyeleotris marmorata Bleeker) fed with different diets. Aquaculture 274:49–56. doi: 10.1016/j.aquaculture.2007.11.023 CrossRefGoogle Scholar
  26. Laurent P, Wilkie MP, Chevalier C, Wood CM (2000) The effect of highly alkaline water (pH 9.5) on the morphology and morphometry of chloride cells and pavement cells in the gills of the freshwater rainbow trout: relationship to ionic transport and ammonia excretion. Can J Zool 78:307–319. doi: 10.1139/z99-207 CrossRefGoogle Scholar
  27. Lazzari R, Baldisserotto B (2008) Nitrogen and phosphorus waste in fish farming. Boletim do Instituto de Pesca 34:591–600. http://www.pbct.inweb.org.br/pbct/researcher/1649/. Accessed 15 April 2012
  28. Leung KMY, Chu JCW, Wu RSS (1999) Effects of body weight, water temperature and ration size on ammonia excretion by aerolated grouper (Epinephelus areolatus,) and mangrove snapper (Lutjanus argentimaculatus). Aquaculture 170:215–227. doi: 10.1016/S0044-8486(98)00404-9 Google Scholar
  29. Matsuo AYO, Val AL (2007) Acclimation to humic substances prevents whole body sodium loss and stimulates branchial calcium uptake capacity in card in al tetra Paracheirodon axelrodi (Schultz) subjected to extremely low pH. J Fish Biol 70:989–1000. doi: 10.1111/j.1095-8649.2007.01358.x CrossRefGoogle Scholar
  30. McCarthy JJ, Whitledge TE (1972) Nitrogen excretion by anchovy (Engraulis mordax) and jack mackerel (Trachurus symmetricus). Fisheries Bulletin 70:395–401Google Scholar
  31. McGeer JC, Wright PA, Wood CM, Wilkie MP, Mazur CF, Iwana GK (1994) Nitrogen excretion in four species of fish from an alkaline lake. Trans Am Fish Soc 112:824–829. doi: 10.1577/1548-8659(1994)123<0824:NNEIFS>2.3.CO;2 CrossRefGoogle Scholar
  32. Miron DS, Moraes B, Becker AG, Crestani M, Spanevello R, Loro VL, Baldisserotto B (2008) Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 277:192–196. doi: 10.1016/j.aquaculture.2008.02.023 CrossRefGoogle Scholar
  33. Miron DS, Becker AG, Loro VL, Baldisserotto B (2011) Waterborne ammonia and silver catfish, Rhamdia quelen: survival and growth. Ciência Rural 41:349–353. doi: 10.1590/S0103-84782011000200028 CrossRefGoogle Scholar
  34. Oliva-Paterna FJ, García-Alonso J, Cardozo V, Torralva M (2007) Field studies of ammonia excretion in Aphanius iberus (Pisces; Cyprinodontidae): body size and habitat effect. J Appl Ichthyol 23:93–98. doi: 10.1111/j.1439-0426.2006.00791.x CrossRefGoogle Scholar
  35. Parra JEG, Baldisserotto B (2007) Effect of water pH and hardness on survival and growth of freshwater teleosts. In: Baldisserotto B, Mancera JM, Kapoor BG (eds) Fish osmoregulation. Science Publishers, New Hampshire, pp 135–150CrossRefGoogle Scholar
  36. Piaia R, Townsend CR, Baldisserotto B (1999) Growth and survival of fingerlings of Rhamdia quelen exposed to different photoperiods. Aquacult Int 7:201–205. doi: 10.1023/A:1009299830102 CrossRefGoogle Scholar
  37. Rahmatullah M, Boyde TRC (1980) Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clin Chim Acta 107:3–9. doi: 10.1016/0009-8981(80)90407-6 CrossRefPubMedGoogle Scholar
  38. Riche M, Brown PB (1996) Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 142:269–282. doi: 10.1016/0044-8486(95)01218-4 CrossRefGoogle Scholar
  39. Roy PK, Lall SP (2004) Urinary phosphorus excretion in haddock, Melanogrammus aeglefinus (L.) and Atlantic salmon, Salmo salar (L.). Aquaculture 233:369–382. doi: 10.1016/S0990-7440(98)89007-4 CrossRefGoogle Scholar
  40. Salama A, Morgan IJ, Wood CM (1999) The linkage between Na+ uptake and ammonia excretion in rainbow trout: kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion and the influence of gill boundary layer pH. J Exp Biol 202:697–709. http://jeb.biologists.org/content/202/6/697.long. Accessed 13 April 2012
  41. Scott DM, Wilson RW (2007) Three species of fishes from an eutrophic, seasonally alkaline lake are not more tolerant to acute exposure to high pH in the laboratory. J Fish Biol 70:551–566. doi: 10.1111/j.1095-8649.2007.01329.x CrossRefGoogle Scholar
  42. Scott DM, Lucas MC, Wilson RW (2005) The effect of high pH on ion balance, nitrogen excretion and behaviour in freshwater fish from an eutrophic lake: a laboratory and field study. Aquat Toxicol 73:31–43. doi: 10.1016/j.aquatox.2004.12.013 CrossRefPubMedGoogle Scholar
  43. Smith HW (1929) The excretion of ammonia and urea by the gills of fish. J Biol Chem 81:727–742. http://www.jbc.org/content/81/3/727.full.pdf+html. Acessed 21 June 2012Google Scholar
  44. Steinberg CEW, Kamara S, Prokhotskaya VY, Ianas LM, Karasyova TA, Timofeyev MA, Jie Z, Paul A, Meinelt T, Farjalla VF, Matsuo AYO, Burnison BK, Menzel R (2006) Dissolved humic substances: ecological driving forces from the individual to the ecosystem level? Freshw Biol 51:1189–1210. doi: 10.1111/j.1365-2427.2006.01571.x CrossRefGoogle Scholar
  45. Tantikitti C, Sangpong W, Chiavareesajja S (2005) Effects of defatted soybean protein levels on growth performance and nitrogen and phosphorus excretion in Asian seabass (Lates calcarifer). Aquaculture 248:41–50. doi: 10.1016/j.aquaculture.2005.04.027 CrossRefGoogle Scholar
  46. Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil, p 188Google Scholar
  47. Tng YYM, Wee NLJ, Ip YK, Chew SF (2008) Postprandial nitrogen metabolism and excretion in juvenile marble goby, Oxyeleotris marmorata (Bleeker, 1852). Aquaculture 284:260–267. doi: 10.1016/j.aquaculture.2008.07.039 CrossRefGoogle Scholar
  48. Tomasso JR, Goudie CA, Simco BA, Davis KB (1980) Effects of environmental pH and calcium on ammonia toxicity in channel catfish. Trans Am Fish Soc 109:229–234. doi: 10.1577/1548-8659(1980)109<229:EOEPAC>2.0.CO;2 CrossRefGoogle Scholar
  49. Townsend CR, Baldisserotto B (2001) Survival of silver catfish juveniles exposed to acute changes of water pH and hardness. Aquacult Int 9:413–419. doi: 10.1023/A:102059222686 CrossRefGoogle Scholar
  50. van Weerd JH, Verastegui AM, Tijssen PAT (1995) Nitrogen excretion and determination of nitrogen and energy budgets in rainbow trout (Oncorhynchus mykiss R.) under different feeding regimes. J Appl Ichthyol 11:322–328. doi: 10.1111/j.1439-0426.1995.tb00034.x CrossRefGoogle Scholar
  51. Verdouw H, Van Echteld CJA, Dekkers EMJ (1978) Ammonia determination based on indophenols formation with sodium salicylate. Water Res 12:399–402. doi: 10.1016/0043-1354(78)90107-0 CrossRefGoogle Scholar
  52. Weihrauch D, Wilkie MP, Walsh PJ (2009) Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol 212:1716–1730. doi: 10.1242/jeb.036103 CrossRefPubMedGoogle Scholar
  53. Wicks BJ, Randall DJ (2002) The effect of sub-lethal ammonia exposure on fed and unfed rainbow trout: the role of glutamine in regulation of ammonia. Comp Biochem Physiol Part A 132:275–285. doi: 10.1016/S1095-6433(02)00034-X CrossRefGoogle Scholar
  54. Wilkie MP (2002) Ammonia excretion and urea handling by the fish gills: present understanding and future research challenges. J Exp Zool 293:284–301. doi: 10.1002/jez.10123 CrossRefPubMedGoogle Scholar
  55. Wilkie MP, Wood CM (1995) Recovery from high pH exposure in the rainbow trout: white muscle ammonia storage, ammonia washout, and the restoration of blood chemistry. Physiological Zoology 68:379–401. http://www.jstor.org/stable/30163775. Accessed 13 April 13 2012
  56. Wilkie MP, Simmons HE, Wood CM (1996) Physiological adaptations of rainbow trout to chronically elevated water pH (pH 9.5). J Exp Zool 274:1–14. doi: 10.1002/(SICI)1097-010X(19960101)274:1<1:AID-JEZ1>3.0.CO;2 CrossRefGoogle Scholar
  57. Wilson JM, Iwata K, Iwama GK, Randall DJ (1998) Inhibition of ammonia excretion and production in rainbow trout during severe alkaline exposure. Comp Biochem Physiol B-Biochem Mol Biol 121:99–109. doi: 10.1016/S0305-0491(98)10063-9 CrossRefGoogle Scholar
  58. Wood CM (1993) Ammonia and urea metabolism and excretion. In: Evans D (ed) The physiology of fishes. CRC Press, Boca Raton, pp 379–425Google Scholar
  59. Wood CM (2001) Toxic responses of the gill. In: Schlenk D, Benson WH (eds) Target organ toxicity in marine and freshwater teleosts organs. Taylor and Francis, London, pp 1–89Google Scholar
  60. Wood CM, Matsuo AYO, Wilson RW, Gonzalez RJ, Patrick ML, Playle RC, Val AL (2003) Protection by natural blackwater against disturbances in ion fluxes caused by low pH exposure in freshwater stingrays endemic to the Rio Negro. Physiol Biochem Zool 76:12–27. doi: 10.1086/367946 CrossRefPubMedGoogle Scholar
  61. Wood CM, Iftikar FI, Scott GR, De Boeck G, Sloman KA, Matey V, Domingos FXV, Duarte RM, Almeida-Val VMF, Val AL (2009) Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): new angles to the osmorespiratory compromise. J Exp Biol 212:1949–1964. doi: 10.1242/jeb.028464 CrossRefPubMedGoogle Scholar
  62. Wright PA, Wood CM (1985) An analysis of branchial ammonia excretion in the fresh water rainbow trout: effects of environmental pH change and sodium uptake blockade. J Exp Biol 114:329–353. http://jeb.biologists.org/content/114/1/329.full.pdf+html. Accessed 13 April 2012
  63. Wright PA, Wood CM (2009) A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J Exp Biol 212:2303–2312. doi: 10.1242/jeb.023085 CrossRefPubMedGoogle Scholar
  64. Wright PA, Randall DJ, Perry SF (1989) Fish gill water boundary layer: a site of linkage between carbon dioxide and ammonia excretion. J Comp Physiol B 158:627–635. doi: 10.1007/BF00693000 CrossRefGoogle Scholar
  65. Zall DM, Fisher MD, Garner QM (1956) Photometric determination of chlorides in water. Anal Chem 28:1665–1678. doi: 10.1021/ac60119a009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jaqueline Ineu Golombieski
    • 1
  • Gessi Koakoski
    • 2
  • Alessandra Janaína Becker
    • 1
  • Ana Paula Gottlieb Almeida
    • 1
  • Cândida Toni
    • 2
  • Isabela Andres Finamor
    • 2
  • Maria Amália Pavanato
    • 1
  • Tielle Moraes de Almeida
    • 3
  • Bernardo Baldisserotto
    • 1
  1. 1.Departamento de Fisiologia e FarmacologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Programa de Pós-Graduação em FarmacologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Departamento de QuímicaUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations