Advertisement

Fish Physiology and Biochemistry

, Volume 39, Issue 3, pp 649–659 | Cite as

Cadmium exposure affects the expression of genes involved in skeletogenesis and stress response in gilthead sea bream larvae

  • Asma Sassi
  • Maria José Darias
  • Khaled Said
  • Imed Messaoudi
  • Enric Gisbert
Article

Abstract

Gilthead sea bream larvae (Sparus aurata) aged 47 days post hatching (dph) (11.6–12.8 mg in wet weight) were exposed to several sublethal concentrations of Cd2+ (0.1, 5 and 10 mg/L) during 6 days in order to investigate the effects of this heavy metal on the expression of selected genes involved in detoxification (metallothionein-mt, glutathione peroxidase 1-gpx1), stress response (heat shock protein 70-hsp70, tumour necrosis factor α-tnfα) and ossification (osteocalcin-oc) processes. For this purpose, specimens of 47 dph were exposed first for 72 h from 0.1 to 20 mg/L of Cd2+ in order to evaluate the median lethal concentration (LC50) for this metal, which was determined at 15.32 mg/L. Considering the results regarding the relative transcript levels of gpx1 and hsp70, Cd2+ at any of the tested levels (0.1, 5 and 10 mg/L) did not induce oxidative stress in gilthead sea bream larvae, whereas relative transcript levels of mt were increased at 5 and 10 mg/L of Cd2+ probably to detoxify this metal excess. Relative transcript levels of tnfα were not level dependent and were down-regulated in larvae exposed to 5 and 10 mg/L of Cd2+. At those concentrations, transcript levels of oc were down-regulated suggesting a disruption in bone mineralization. Results from this study provided insights in some molecular mechanisms underlying Cd2+-induced toxicity in fish at early stages of development. This is the first study to show that cadmium contamination can depress oc expression in teleosts.

Keywords

Cadmium Larvae Sparus aurata mt gpx1 hsp70 tnfα oc 

Notes

Acknowledgments

Authors would like to express their gratitude to S. Molas, M. Matas and M. Monllaó for fish larval rearing, A. Estévez for generously donating the fish for experimental purposes and M. Banni for providing help in statistics. This work was funded by the Ministry of Science and Innovation (MICIIN, projects: AGL2005-02478, AGL2008-03897-C04-01) and the Tunisian Ministry of Higher Education, Scientific Research and Technology. M. J. Darias was supported by a Juan de la Cierva post-doctoral contract.

References

  1. Apostolaki M, Armaka M, Victoratos P, Kollias G (2010) Cellular mechanisms of t function in models of inflammation and autoimmunity. In: Kollias G, Sfikakis PP (eds) TNF pathophysiology: molecular and cellular mechanisms. Karger, Basel, pp 1–26CrossRefGoogle Scholar
  2. Banni M, Dondero F, Jebali J, Guerbej H, Boussetta H, Viarengo A (2007) Assessment of heavy metal contamination using real time PCR analysis of mussel metallothionein mt10 and mt20 expression: a validation along the Tunisian coasts. Biomarkers 12:369–383PubMedCrossRefGoogle Scholar
  3. Basha PS, Siraj P, Rani S, Usha A (2003) Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol Environ Safe 56:218–221. doi: 10.1016/S0147-6513(03)00028-9 CrossRefGoogle Scholar
  4. Benson WH, Baer KN, Watson CF (1990) Metallothionein as biomarker of environmental metal contamination: species dependent effects. In: McCarthy JF, Shugart LR (eds) Biomarkers of environmental contamination. Lews, FL, pp 255–265Google Scholar
  5. Beyersmann D (2002) Effects of carcinogenic metals on gene expression. Toxicol Lett 127:63–68. doi: 10.1016/S0378-4274(01)00484-2 PubMedCrossRefGoogle Scholar
  6. Birceanu O, Chowdhury MJ, Gillis PL, McGeer JC, Wood CM, Wilkie MP (2008) Modes of metal toxicity and impaired branchial ionoregulation in rainbow trout exposed to mixtures of Pb and Cd2+ in soft water. Aquat Toxicol 89:222–231. doi: 10.1016/j.aquatox.2008.07.007 PubMedCrossRefGoogle Scholar
  7. Blechinger SR, Warren JT Jr, Kuwada JY, Krone PH (2002) Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect 110:1041–1046. doi: 10.1289/ehp.021101041 PubMedCrossRefGoogle Scholar
  8. Blechinger SR, Kusch RC, Haugo K, Matz C, Chivers DP, Krone PH (2007) Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish. Toxicol Appl Pharmacol 224:72–80. doi: 10.1016/j.taap.2007.06.025 PubMedCrossRefGoogle Scholar
  9. Bodo M, Balloni S, Lumare E, Bacci M, Calvitti M, Dell’Omo M, Murgia N, Marinucci L (2010) Effects of sub-toxic cadmium concentrations on bone gene expression program: results of an in vitro study. Toxicol In Vitro 24:1670–1680. doi: 10.1016/j.tiv.2010.05.020 PubMedCrossRefGoogle Scholar
  10. Bouraoui Z, Banni M, Ghedira J, Clerandeau C, Guerbej H, Narbonne JF, Boussetta H (2008) Acute effects of cadmium on liver phase I and phase II enzymes and metallothionein accumulation on sea bream Sparus aurata. Fish Physiol Biochem 34:201–217. doi: 10.1007/s10695-007-9177-y PubMedCrossRefGoogle Scholar
  11. Cancela ML, Williamson MK, Price PA (1995) Amino acid sequence of bone Gla protein from the African clawed toad Xenopus laevis and the fish Sparus aurata. Int J Pept Protein Res 46:419–423. doi: 10.1111/j.1399-3011.1995.tb01076.x PubMedCrossRefGoogle Scholar
  12. Cao L, Huang W, Shan X, Xiao Z, Wang Q, Dou S (2009) Cadmium toxicity to embryonic—larval development and survival in red sea bream Pagrus major. Ecotoxicol Environ Saf 72:1966–1974. doi: 10.1016/j.ecoenv.2009.06.002 PubMedCrossRefGoogle Scholar
  13. Chen C, Zhou Q, Liu S, Xiu Z (2011) Acute toxicity, biochemical and gene expression responses of the earthworm Eisenia fetida exposed to polycyclic musks. Chemosphere 83:1147–1154. doi: 10.1016/j.chemosphere.2011.01.006 PubMedCrossRefGoogle Scholar
  14. Cheng SH, Wai AWK, So CH, Wu RSS (2000) Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ Toxicol Chem 19:3024–3031. doi: 10.1002/etc.5620191223 CrossRefGoogle Scholar
  15. Choi CY, An KW, Nelson ER, Habibi HR (2007) Cadmium affects the expression of metallothionein (MT) and glutathione peroxidase (GPX) mRNA in goldfish, Carassius auratus. Comp Biochem Physiol 145C:595–600. doi: 10.1016/j.cbpc.2007.02.007 Google Scholar
  16. Cousinou M, Nilsen UB, Lopez-Barea J, Dorado G (2000) New methods to use fish cytochrome P4501A to assess marine organic pollutants. Sci Total Environ 247:213–225. doi: 10.1016/S0048-9697(99)00492-1 PubMedCrossRefGoogle Scholar
  17. Cusimano RF, Brakke DF, Champman GA (1986) Effects of pH on the toxicities of cadmium, copper and zinc to steelhead trout (Salmo gairdneri). Can J Fish Aquat Sci 43:1497–1503. doi: 10.1139/f86-187 CrossRefGoogle Scholar
  18. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Ravindran Nair A, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940. doi: 10.1007/s10534-010-9329-x PubMedCrossRefGoogle Scholar
  19. Darias MJ, Chow O, Cahu C, Zambonino-Infante JL, Mazurais D (2010) Double staining protocol for developing European sea bass (Dicentrarchus labrax) larvae. J Appl Ichthyol 26:280–285. doi: 10.1111/j.1439-0426.2010.01421.x CrossRefGoogle Scholar
  20. Darias MJ, Mazurais D, Koumoundouros G, Le Gall MM, Huelvan C, Desbruyeres E, Quazuguel P, Cahu CL, Zambonino-Infante JL (2011) Imbalanced dietary ascorbic acid alters molecular pathways involved in skeletogenesis of developing European sea bass (Dicentrarchus labrax). Comp Biochem Physiol 159A:46–55. doi: 10.1016/j.cbpa.2011.01.013 Google Scholar
  21. Darias MJ, Boglino A, Manchado M, Ortiz-Delgado JB, Estévez A, Andree KB, Gisbert E (2012) Molecular regulation of both dietary vitamin A and fatty acid absorption and metabolism associated with larval morphogenesis of Senegalese sole (Solea senegalensis). Comp Biochem Physiol 161A:130–139. doi: 10.1016/j.cbpa.2011.10.001 Google Scholar
  22. Faustino M, Power DM (1998) Development of osteological structures in the sea bream: vertebral column and caudal fin complex. J Fish Biol 52:11–22. doi: 10.1111/j.1095-8649.1998.tb01548.x CrossRefGoogle Scholar
  23. Fernández I, Hontoria F, Ortiz-Delgado JB, Kotzamanis Y, Estévez A, Zambonino-Infante JL, Gisbert E (2008) Larval performance and skeletal deformities in farmed gilthead sea bream (Sparus aurata) fed with graded levels of vitamin A enriched rotifers (Brachionus plicatilis). Aquaculture 283:102–115. doi: 10.1016/j.aquaculture.2008.06.037 CrossRefGoogle Scholar
  24. Fernández I, Darias M, Andree KB, Mazurais D, Zambonino-Infante JL, Gisbert E (2011) Coordinated gene expression during gilthead sea bream skeletogenesis and its disruption by nutritional hypervitaminosis A. BMC Dev Biol 11:7. doi: 10.1186/1471-213X-11-7 PubMedCrossRefGoogle Scholar
  25. Ferrari L, Eissa BL, Salibián A (2012) Energy balance of juvenile Cyprinus carpio after a short-term exposure to sublethal water-borne cadmium. Fish Physiol Biochem 37:853–862. doi: 10.1007/s10695-011-9483-2 CrossRefGoogle Scholar
  26. Forlenza M, Magez S, Scharsack JP, Westphal A, Savelkoul HFJ, Wiegertjes GF (2009) Receptor-mediated and lectin-like activities of carp (Cyprinus carpio) TNF-α. J Immunol 183:5319–5332. doi: 10.4049/jimmunol.0901780 PubMedCrossRefGoogle Scholar
  27. Funk AE, Day FA, Brady FO (1987) Displacement of zinc and copper from copper induced metallothionein by cadmium and by mercury: in vivo and ex vivo studies. Comp Biochem Physiol 86C:1–6. doi: 10.1016/0742-8413(87)90133-2 Google Scholar
  28. George S, Gubbins M, MacIntosh A, Reynolds W, Sabine V, Scott A, Thain J (2004) A comparison of pollutant biomarker responses with transcriptional responses in European flounders (Platicthys flesus) subjected to estuarine pollution. Mar Environ Res 58:571–575. doi: 10.1016/j.marenvres.2004.03.047 PubMedCrossRefGoogle Scholar
  29. Hallare AV, Schirling M, Luckenbach T, Kohler HR, Triebskorn R (2005) Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J Therm Biol 30:7–17. doi: 10.1016/j.jtherbio.2004.06.002 CrossRefGoogle Scholar
  30. Hansen BH, Romma S, Garmo OA, Olsvik PA, Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol 143C:263–274. doi: 10.1016/j.cbpc.2006.02.010 Google Scholar
  31. Harper DD, Farag AM, Brumbaugh WG (2008) Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile cutthroat trout. Arch Environ Contam Toxicol 54:697–704PubMedCrossRefGoogle Scholar
  32. Hutchinson TH, Williams TD, Eales GJ (1994) Toxicity of cadmium, hexavalent chromium and copper to marine fish larvae (Cyprinodon variegatus) and copepods (Tisbe battagliai). Mar Environ Res 38:275–290. doi: 10.1007/s00244-007-9063-8 CrossRefGoogle Scholar
  33. Inoue K, Takano H, Shimada A, Satoh M (2009) Metallothionein as an anti-inflammatory mediator. Mediat Inflamm 2009:101–659. doi: 10.1155/2009/101659 Google Scholar
  34. Kessabi K, Kerkeni A, Saïd K, Messaoudi I (2009) Involvement of Cd2+ bioaccumulation in spinal deformities occurrence in natural populations of Mediterranean killifish. Biol Trace Elem Res 128:72–81. doi: 10.1007/s12011-008-8255-z PubMedCrossRefGoogle Scholar
  35. Kim SG, Jee JH, Kang JC (2004) Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after subchronic cadmium exposure. Environ Pollut 127:117–123. doi: 1016/S0269-7491(03)00254-9 PubMedCrossRefGoogle Scholar
  36. Kwong RWM, Andrés JA, Niyogi S (2011) Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: influence of elevated dietary iron. Aquat Toxicol 102:1–9. doi: 10.1016/j.aquatox.2010.12.010 PubMedCrossRefGoogle Scholar
  37. Lam LK, Ko PW, Wong YK-Y, Chan KM (1998) Metal toxicity and metallothionein gene expression studies in common carp and tilapia. Mar Environ Res 46:563–566. doi: 10.1016/S0141-1136(98)00008-7 CrossRefGoogle Scholar
  38. Lange A, Ausseil O, Segner H (2002) Alterations of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc. Comp Biochem Physiol 131C:231–243. doi: 10.1016/S1532-0456(02)00010-8 Google Scholar
  39. Lie KK, Moren M (2012) Retinoic acid induces two osteocalcin isoforms and inhibits markers of osteoclast activity in Atlantic cod (Gadus morhua) ex vivo cultured craniofacial tissues. Comp Biochem Physiol 161A:174–184. doi: 10.1016/j.cbpa.2011.10.023 Google Scholar
  40. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214. doi: 10.1016/j.taap.2009.01.029 PubMedCrossRefGoogle Scholar
  41. Luckenbach T, Kilian M, Triebskorn R, Oberemm A (2001) Fish early life stage tests as a tool to assess embryotoxic potentials in small streams. J Aquat Ecosyst Stress Recover (formerly J Aquat Ecosyst Health) 8:355–370CrossRefGoogle Scholar
  42. Malekpouri P, Moshtaghie AA, Kazemian M, Soltani M (2011) Protective effect of zinc on related parameters to bone metabolism in common carp fish (Cyprinus carpio L.) intoxified with cadmium. Fish Physiol Biochem 37:187–196. doi: 10.1007/s10695-010-9430-7 PubMedCrossRefGoogle Scholar
  43. Messaoudi I, Deli T, Kessabi K, Barhoumi S, Kerkeni A, Saïd K (2009) Association of spinal deformities with heavy metal bioaccumulation in natural populations of grass goby, Zosterisessor ophiocephalus Pallas, 1811 from the Gulf of Gabès (Tunisia). Environ Monit Assess 156:551–560. doi: 10.1007/s10661-008-0504-2 PubMedCrossRefGoogle Scholar
  44. Middaugh DP, Dean JM (1977) Comparative sensitivity of eggs, larvae and adults of the estuarine teleosts, Fundulus heteroclitus and Menidia menidia to cadmium. Bull Environ Contam Toxicol 17:645–652PubMedCrossRefGoogle Scholar
  45. Mitter K, Kotoulas G, Magoulas A, Mulero V, Sepulcre P, Figueras A, Novoa B, Sarropoulou E (2009) Evaluation of candidate reference genes for QPCR during ontogenesis and of immune-relevant tissues of European seabass (Dicentrarchus labrax). Comp Biochem Physiol 153B:340–347. doi: 10.1016/j.cbpb.2009.04.009 Google Scholar
  46. Muley DV, Kamble GB, Bhilave MP (2000) Effect of heavy metals on nucleic acids in Cyprinus carpio. J Environ Biol 21:367–370Google Scholar
  47. Nadeau D, Corneau S, Plante I, Morrow G, Tanguay RM (2001) Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell Stress Chaperon 6:153–163CrossRefGoogle Scholar
  48. Neve A, Corrado A, Cantatore FP (2011) Osteoblast physiology in normal and pathological conditions. Cell Tiss Res 343:289–302. doi: 10.1007/s00441-010-1086-1 CrossRefGoogle Scholar
  49. Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S (2003) Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallagoattu (Bl. & Schn.). Sci Total Environ 309:105–115. doi: 10.1016/S0048-9697(03)00006-8 PubMedCrossRefGoogle Scholar
  50. Paul-Pont I, Gonzalez P, Baudrimont M, Nilia H, de Montaudouin X (2010) Short-term metallothionein inductions in the edible cockle Cerastoderma edule after cadmium or mercury exposure: discrepancy between mRNA and protein responses. Aquat Toxicol 97:260–267. doi: 10.1016/j.aquatox.2009.12.007 PubMedCrossRefGoogle Scholar
  51. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi: 10.1093/nar/30.9.e36 PubMedCrossRefGoogle Scholar
  52. Pinto JP, Conceição N, Gavaia PJ, Cancela ML (2003) Matrix Gla protein gene expression and protein accumulation colocalize with cartilage distribution during development of the teleost fish Sparus aurata. Bone 32:201–210. doi: 10.1016/S8756-3282(02)00981-X PubMedCrossRefGoogle Scholar
  53. Pohl CH (1990) Skeletal deformities and trace metal contents of European smelt, Osmerus eperlanus, in the Elbe Estuary. Meeresforschung/Rep Mar Res 33:76–89Google Scholar
  54. Rebelo MF, Pfeiffer WC, Da Silva H Jr, Moraes MO (2003) Cloning and detection of metallothionein mRNA by RT-PCR in mangrove oysters (Crassostrea rhizophorae). Aquat Toxicol 64:359–362. doi: 10.1016/S0166-445X(03)00059-6 PubMedCrossRefGoogle Scholar
  55. Regunathan A, Glesne DA, Wilson AK, Song J, Nicolae D, Flores T, Bhattacharyya MH (2003) Microarray analysis of changes in bone cell gene expression early after cadmium gavage in mice. Toxicol Appl Pharmacol 191:272–293. doi: 10.1016/S0041-008X(03)00163-7 PubMedCrossRefGoogle Scholar
  56. Sassi A, Annabi A, Kessabi K, Kerkeni A, Saïd K (2010) Influence of high temperature on cadmium-induced skeletal deformities in juvenile mosquitofish (Gambusia affinis). Fish Physiol Biochem 36:403–409. doi: 10.1007/s10695-009-9307-9 PubMedCrossRefGoogle Scholar
  57. Shazili NAM (1995) Effects of salinity and pre-exposure on acute cadmium toxicity to seabass, Lates calcarifer. Bull Environ Contam Toxicol 54:22–28. doi: 10.1007/BF00196265 PubMedCrossRefGoogle Scholar
  58. Solé-Rovira M, Fernández-Díaz C, Cañavate JP, Blasco J (2005) Effects on metallothionein levels and other stress defences in Senegal sole larvae exposed to cadmium. Bull Environ Contam Toxicol 74:597–603. doi: 10.1007/s00128-005-0625-z PubMedCrossRefGoogle Scholar
  59. Sovenyi J, Szakolczai J (1993) Studies on the toxic and immunosuppressive effects of cadmium on the common carp. Acta Vet Hung 41:415–426PubMedGoogle Scholar
  60. Suresh A, Sivaramakrishna B, Radhakrishna K (1993) Patterns of cadmium accumulation in the organs of fry and fingerlings of freshwater fish Cyprinus carpio following cadmium exposure. Chemosphere 26:945–953. doi: 10.1016/0045-6535(93)90369-G CrossRefGoogle Scholar
  61. Świergosz-Kowalewska R, Bednarska A, Kafel A (2006) Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contaminants. Chemosphere 65:963–974. doi: 10.1016/j.chemosphere.2006.03.040 PubMedCrossRefGoogle Scholar
  62. Uriu K, Morimoto I, Kai K, Okazaki Y, Okada Y, Qie YL, Okimoto N, Kaizu K, Nakamura T, Eto S (2000) Uncoupling between bone formation and resorption in ovariectomized rats with chronic cadmium exposure. Toxicol Appl Pharmacol 164:264–272. doi: 10.1006/taap.2000.8908 PubMedCrossRefGoogle Scholar
  63. USEPA (1985) Ambient water quality criteria for cadmium-1984, EPA 440/5-84-032. Office of Water Regulations and Standards, Criteria and Standards Division, USEPA, Washington, DCGoogle Scholar
  64. Witeska M, Jezierska B, Wolnieki J (2006) Respiratory and hematological response of tench, Tinca tinca (L.) to a short-term cadmium exposure. Aquac Int 14:141–152. doi: 10.1007/s10499-005-9020-3 CrossRefGoogle Scholar
  65. Yamashita M, Yabu T, Ojima N (2010) Stress protein HSP70 in fish. Aqua Biosci Monogr 3:111–141. doi: 10.5047/absm.2010.00304.0111 CrossRefGoogle Scholar
  66. Zar JH (1974) Biostatistical analysis. Prentice Hall, NJ, p 662Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Asma Sassi
    • 1
  • Maria José Darias
    • 2
    • 3
  • Khaled Said
    • 1
  • Imed Messaoudi
    • 1
  • Enric Gisbert
    • 2
  1. 1.Laboratoire LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de BiotechnologieUniversité de MonastirMonastirTunisia
  2. 2.IRTA, Centre de Sant Carles de la RàpitaUnitat de Cultius ExperimentalsSant Carles de la RàpitaSpain
  3. 3.IRDUMR 226 ISE-MMontpellier Cedex 5France

Personalised recommendations