Skip to main content
Log in

Intestinal absorption of amino acids in the Pacific bluefin tuna (Thunnus orientalis): in vitro lysine–arginine interaction using the everted intestine system

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The interaction between lysine (Lys) and arginine (Arg) in the proximal intestinal region of Pacific bluefin tuna (Thunnus orientalis) was evaluated using the everted intestine method. This in vitro intestinal system has been shown to be an effective tool for studying the nutrient absorption without the need to handle the tuna fish in marine cages as needed for digestibility and amino acid (AA) absorption. We used a factorial design with two sets of variables: low and high Lys concentration (10 and 75 mM) and four different Arg concentrations (3, 10, 20, and 30 mM). Both amino acids were dissolved in marine Ringer solution with a basal amino acidic composition consisting of a tryptone solution (9 mg mL−1). No interaction was observed between the absorption of Lys and Arg during the first 10 min of the experiment when low concentration of Lys and Arg was used in the hydrolyzate solution. However, there seemed to be a positive effect on Lys absorption when both amino acids were at high concentrations (30 and 75 mM, respectively). This type of studies will led us to test different formulations and/or additives to better understand the efficiency of AA supplementation as an alternative to in situ studies that are difficult to follow to design with the Pacific Bluefin Tuna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguado F, Martínez FJ, García-García B (2004) In vivo total nitrogen and total phosphorus digestibility in Atlantic bluefin tuna (Thunnus thynnus thynnus Linnaeus, 1758) under industrially intensive fattening conditions in Southeast Spain Mediterranean coastal waters. Aquac Nutr 10:413–419

    Article  Google Scholar 

  • Bai SC, Gatlin DM III (1994) Effect of l-lysine supplementation of diet with different protein levels and sources of channel catfish Ictalurus punctatus (Rafinesque). Aquac Fish Manage 25:465–474

    Google Scholar 

  • Bakke-McKellep AM, Nordrum S, Krogdahl Å, Buddington RK (2000) Absorption of glucose, amino acids, and dipeptides by the intestines of Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 22:33–44

    Article  CAS  Google Scholar 

  • Ball RO, Urschel KL, Pecharz PB (2007) Nutritional consequences of interspecies differences in arginine and lysine metabolism. J Nutr 137:1626S–1641S

    PubMed  CAS  Google Scholar 

  • Berge GE, Lied E, Sveier H (1997) Nutrition of Atlantic salmon (Salmo salar): the requirement and metabolism of arginine. Comp Biochem Physiol A 117:501–509

    Article  Google Scholar 

  • Berge GE, Sveier H, Lied E (1998) Nutrition of Atlantic salmon (Salmo salar): the requirement and metabolic effect of lysine. Comp Biochem Physiol A 120:477–485

    Article  Google Scholar 

  • Berge GE, Bakke-McKellep AM, Lied E (1999) In vitro uptake and interaction between arginine and lysine in the intestine of Atlantic salmon (Salmo salar). Aquaculture 179:181–193

    Article  CAS  Google Scholar 

  • Bogé G, Roche H, Balocco C (2002) Amino acid transport by intestinal brush border vesicles of a marine fish, Boops salpa. Comp Biochem Physiol B 131:19–26

    Article  PubMed  Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  PubMed  Google Scholar 

  • Buddington RK, Chen JW, Diamond JM (1987) Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J Physiol 392:261–281

    Google Scholar 

  • Cheng ZJ, Hardy RW, Usry JL (2003) Effects of lysine supplementation in plant protein-based diets on the performance of rainbow trout (Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture 215:255–265

    Article  CAS  Google Scholar 

  • Cowey CB, Walton MJ (1988) Studies on the uptake of (14C) amino acids derived from both dietary (14C) protein and dietary (14C) amino acids by rainbow trout, Salmo gairdneri Richardson. J Fish Biol 33:293–305

    Article  CAS  Google Scholar 

  • Cynober L, Le Boucher J, Vasson MP (1995) Arginine metabolism in mammals. Nutr Biochem 6:402–413

    Article  CAS  Google Scholar 

  • Day OJ, Plascencia-González HG (2000) Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L. Aquac Nutr 6:221–228

    Article  CAS  Google Scholar 

  • Griffin ME, Wilson KA, Brown PB (1994) Dietary arginine requirement of juvenile hybrid striped bass. J Nutr 124:888–893

    PubMed  CAS  Google Scholar 

  • Guillaume J, Kaushik S, Bergot P, Métailler R (2001) Nutrition and feeding of fish and crustaceans. Springer Praxis Books, Chichester

    Google Scholar 

  • Hardy RW, Barrows FT (2002) Diet formulation and manufacture. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, San Diego, pp 505–600

    Google Scholar 

  • Kaushik SJ, Fauconneau B (1984) Effects of lysine administration on plasma arginine and on some nitrogenous catabolites in rainbow trout. Comp Biochem Physiol A 79:459–462

    Article  Google Scholar 

  • Maenz DD, Chenu C, Breton S, Berteloot A (1992) pH-dependent heterogeneity of acidic amino acid transport in rabbit jejunal brush border membrane vesicles. J Biol Chem 257(3):1510–1516

    Google Scholar 

  • Maenz DD, Chenu C, Berteloot A (1993) Heterotrophic effects of dipolar amino acids on the activity of the anionic amino acids transport system X AG in rabbit jejunal brush-border membrane vesicles. J Biol Chem 268(21):15361–15367

    PubMed  CAS  Google Scholar 

  • Mai K, Zhang L, Ai Q, Duan Q, Zhang C, Li H, Wan J, Liufu Z (2006) Dietary lysine requirement of juvenile Japanese seabass, Lateolabrax japonicas. Aquaculture 258:535–542

    Article  CAS  Google Scholar 

  • Mailliard ME, Stevens BR, Mann GE (1995) Amino acid transport by small intestinal, hepatic and pancreatic epithelia. Gastroenterology 108:888–910

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Montaño E, Peña E, Focken U, Viana MT (2010) Intestinal absorption of amino acids in the Pacific bluefin tuna (Thunnus orientalis): in vitro uptake of amino acids using hydrolyzed sardine muscle at three different concentrations. Aquaculture 299:134–139

    Article  Google Scholar 

  • Martínez-Montaño E, Peña E, Viana MT (2011) In vitro amino acid absorption using hydrolysed sardine muscle or soybean meal at different intestinal regions of the Pacific bluefin tuna (Thunnus orientalis). Aquac Nutr 17:789–797

    Article  Google Scholar 

  • Matthews JC (2000) Amino acids and peptide transport systems. In: D’Mello JPF (ed) Farm animal metabolism and nutrition. CAB International, Wallingford, pp 3–20

    Chapter  Google Scholar 

  • McNamara PD, Rea CT, Segal S (1986) Lysine uptake by rat renal brush-border membrane vesicles. Am J Physiol 251:F734–F742

    PubMed  CAS  Google Scholar 

  • Mourente G, Tocher DR (2009) Tuna nutrition and feeds: current status and future perspectives. Rev Fish Sci 17:373–390

    Article  CAS  Google Scholar 

  • Moyano FJ, Savoie L (2001) Comparison of in vitro systems of protein digestion using either mammal or fish proteolytic enzymes. Comp Biochem Physiol A 128:359–368

    Article  CAS  Google Scholar 

  • National Research Council (2011) Nutritional requirements of fish and shrimps. The National Academic Press, Washington, DC, p 376

    Google Scholar 

  • Ottolenghi F (2008) Capture-based aquaculture of bluefin tuna. In: Lovatelli A, Holthus PF (eds) Capture-based aquaculture: global overview. FAO Fisheries Technical Paper No. 508, Rome, pp 169–182

  • Palavesam A, Beena S, Immanuel G (2008) Effect of l-lysine supplementation with different protein levels in diets on growth, body composition and protein metabolism in pearl spot Etroplus suratensis (Bloch). Turkish J Fish Aquat Sci 8:133–139

    Google Scholar 

  • Rosas A, Vazquez-Duhalt R, Tinoco R, Shimada A, D’Abramo LR, Viana MT (2008) Comparative intestinal absorption of amino acids in rainbow trout (Oncorhynchus mykiss), totoaba (Totoaba macdonaldi) and Pacific bluefin tuna (Thunnus orientalis). Aquac Nutr 14:481–489

    Article  CAS  Google Scholar 

  • Steffansen B, Nielsen CU, Brodin B, Eriksson AH, Andersen R, Frokjaer S (2004) Intestinal solute carriers: an overview of trends and strategies for improving oral drug absorption. Eur J Pharm Sci 21:3–16

    Article  PubMed  CAS  Google Scholar 

  • Takagi S, Shimeno S, Hosokawa H, Ukawa M (2001) Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea bream Pagrus major. Fish Sci 67:1088–1096

    Article  Google Scholar 

  • Tesser MB, Terjesen BF, Zhang Y, Portella MC, Dabrowski K (2005) Free- and peptide-based dietary arginine supplementation for the South American fish pacu (Piaractus mesopotamicus). Aquaculture Nutr 11:443–453

    Article  CAS  Google Scholar 

  • Tseng Y, Hwang P (2008) Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol C 148:419–429

    Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Zertuche-González JA, Sosa-Nishizaki O, Vaca-Rodríguez JG, del Moral-Simanek R, Yarish C, Costa-Pierce BA (2008) Marine science assessment of capture-based tuna (Thunnus orientalis) Aquaculture in the Ensenada Region of Northern Baja California, México. Final report to the David & Lucile Packard Foundation, Los Altos, CA

Download references

Acknowledgments

This work was supported by project numbers SAGARPA/CONACyT 109150; CB-2009-01 and UABC 403/1/C/19/15. We thank Pacífico Aquaculture SA de CV for their kind donation of fish. Emmanuel Martínez-Montaño and Emyr Peña thank CONACyT for their graduate studies fellowships. We thank Nancy Boston for her English editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Viana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Montaño, E., Peña, E. & Viana, M.T. Intestinal absorption of amino acids in the Pacific bluefin tuna (Thunnus orientalis): in vitro lysine–arginine interaction using the everted intestine system. Fish Physiol Biochem 39, 325–334 (2013). https://doi.org/10.1007/s10695-012-9702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9702-5

Keywords

Navigation