Fish Physiology and Biochemistry

, Volume 38, Issue 2, pp 441–454 | Cite as

Digestive enzyme activities during early ontogeny in Common snook (Centropomus undecimalis)

  • L. D. Jimenez-Martinez
  • C. A. Alvarez-González
  • D. Tovar-Ramírez
  • G. Gaxiola
  • A. Sanchez-Zamora
  • F. J. Moyano
  • F. J. Alarcón
  • G. Márquez-Couturier
  • E. Gisbert
  • W. M. Contreras-Sánchez
  • N. Perales-García
  • L. Arias-Rodríguez
  • J. R. Indy
  • S. Páramo-Delgadillo
  • I. G. Palomino-Albarrán


Common snook (Centropomus undecimalis) is one of the most important marine species under commercial exploitation in the Gulf of Mexico; for this reason, interest in developing its culture is a priority. However, larviculture remains as the main bottleneck for massive production. In this sense, our objective was to determine the changes of digestive enzymes activities using biochemical and electrophoretic techniques during 36 days of Common snook larviculture fed with live preys (microalgae, rotifers, and Artemia). During larviculture, all digestive enzymatic activities were detected with low values since yolk absorption, 2 days after hatching (dah) onwards. However, the maximum values for alkaline protease (6,500 U mg protein−1), trypsin (0.053 mU × 10−3 mg protein−1), and Leucine aminopeptidase (1.4 × 10−3 mU mg protein−1) were detected at 12 dah; for chymotrypsin at 25 dah (3.8 × 10−3 mU mg protein−1), for carboxypeptidase A (280 mU mg protein−1) and lipase at 36 dah (480 U mg protein−1), for α-amylase at 7 dah (1.5 U mg protein−1), for acid phosphatases at 34 dah (5.5 U mg protein−1), and finally for alkaline phosphatase at 25 dah (70 U mg protein−1). The alkaline protease zymogram showed two active bands, the first (26.3 kDa) at 25 dah onwards, and the second (51.6 kDa) at 36 dah. The acid protease zymogram showed two bands (RF = 0.32 and 0.51, respectively) at 34 dah. The digestive enzymatic ontogeny of C. undecimalis is very similar to other strictly marine carnivorous fish, and we suggest that weaning process should be started at 34 dah.


α-Amylase Centropomus undecimalis Common snook Lipase PAGE Phosphatase Protease 



This work was made possible thanks to the Project “Estudio sobre la fisiología digestiva del robalo blanco Centropomus undecimalis” SEP-CONACyT (CB-2006-1-58931). We thank Claudia Durruty Lagunes and Jaime Suárez Bautista for their technical assistance. The Consejo Nacional de Ciencia y Tecnología (CONACYT) of Mexico provided a fellowship grant to the first author Luis Daniel Jiménez-Martínez.


  1. Alarcon FJ, Díaz M, Moyano FJ, Abellan E (1998) Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol Biochem 19:257–267CrossRefGoogle Scholar
  2. Alvarez-González CA, Cervantes-Trujano M, Tovar-Ramírez D, Conklin DE, Nolasco H, Gisbert E, Piedrahita R (2006) Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiol Biochem 31:83–93Google Scholar
  3. Alvarez-González CA, Moyano-López FJ, Civera-Cercedo R, Carrasco-Chávez V, Ortiz-Galindo J, Dumas S (2008) Development of digestive enzyme activity in larvae of spotted sand bass (Palabrax maculatofasciatus). I: biochemical analysis. Fish Physiol Biochem 34:373–384. doi: 10.1007/s10695-007-9197-7 PubMedCrossRefGoogle Scholar
  4. Alvarez-González CA, Moyano-López FJ, Civera-Cercedo R, Carrasco-Chávez V, Ortiz-Galindo J, Nolasco-Soria H, Tovar-Ramírez D, Dumas S (2010) Development of digestive enzyme activity in larvae of spotted sand bass (Palabrax maculatofasciatus) II: electrophoretic analysis. Fish Physiol Biochem 36:29–37. doi: 10.1007/s10695-008-92976-4 PubMedCrossRefGoogle Scholar
  5. Alvarez-Lajonchère L, Cequeira RV, Dos Reis M (2002) Desarrollo embrionario y primeros estadios larvales del robalo chucumite, Centropomus parallelus Poey (Pices: Centropomidae) con interés para su cultivo. Hidrobiológica 12(2):89–100Google Scholar
  6. Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89PubMedCrossRefGoogle Scholar
  7. Avilés-Quevedo A, McGregor-Pardo U, Rodríguez-Ramos R, Morales-Castro O, Huerta-Bello M, AIizawa M (1995) Biología y cultivo de la cabrilla arenera Paralabrax maculatofasciatus (Steindachner, 1868). Secretaría de Pesca. Instituto Nacional de la Pesca. JICA. México, p 85Google Scholar
  8. Baglole CJ, Goff GP, Wright GM (1998) Distribution and ontogeny of digestive enzymes in larval yellowtail and winter flounder. J Fish Biol 53:767–784CrossRefGoogle Scholar
  9. Bergmeyer HV (1974) Phosphatases methods of enzymatic analysis, vol 2. Academic Press, New YorkGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  11. Brock D, Robinette HR, Heinen J (1992) Culture system for evaluating live and formulated diets for larval fish. Progr Fish Cult 54:270–273CrossRefGoogle Scholar
  12. Buchet V, Zambonino-Infante JL, Cahu C (2000) Effect of lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae. Aquaculture 184:339–347CrossRefGoogle Scholar
  13. Cahu CL, Zambonino-Infante JL (1994) Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp Biochem Physiol 109A:213–222CrossRefGoogle Scholar
  14. Cahu CL, Zambonino-Infante JL (1997) Is the digestive capacity of marine fish larvae sufficient for compound diet feeding? Aquacult Int 5:151–160Google Scholar
  15. Cara JB, Moyano FJ, Cardenas S, Fernández-Díaz C, Yúfera M (2003) Assessment of digestive enzyme activities during larval development of white bream. J Fish Biol 63:48–58CrossRefGoogle Scholar
  16. Cequeira RV, Brügger AM (2001) Effect of light intensity on initial survival of fat snook (Centropomus parallelus, Pisces: Centropomidae) larvae. Brazilian Arch Biol Technol Int J 44(4):343–349Google Scholar
  17. Chakrabarti R, Rathore RM, Kumar S (2006) Study of digestive enzyme activities and partial characterization of digestive proteases in a freshwater teleost, Labeo rohita, during early ontogeny. Aquacult Nutr 12:35–43CrossRefGoogle Scholar
  18. Chávez H (1961) Estudio de una nueva especie de robalo del Golfo de México y redescripción de Centropomus undecimalis (Bloch). Ciencia 2(2):75–86Google Scholar
  19. Chen BN, Jian GQ, Martin SK, Wayne GH, Steven MC (2006) Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture 256:489–501CrossRefGoogle Scholar
  20. Chong AS, Hashim R, Chow-Yang L, Ali AB (2002) Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture 203:321–333CrossRefGoogle Scholar
  21. Cohen T, Gertler A, Birk Y (1981) Pancreatic proteolytic enzymes from carp (Cyprinus carpio): 1. Purification and physical properties of trypsin, chymotrypsin, elastase and carboxypeptidase B. Comp Biochem Physiol Comp Biochem 69B(3):639–646CrossRefGoogle Scholar
  22. Concha-Frías B (2008) Evaluación de la capacidad digestiva de juveniles de Centropomus undecimalis (bloch, 1792) sobre diferentes ingredientes proteínicos. Master’s thesis, Universidad Catolica del Norte de Chile, p 109Google Scholar
  23. Copeland RA (ed) (1996) Structural components of enzymes. In: Enzymes, a practical introduction to structure, mechanism and data analysis. Wiley, New York, pp 35–65Google Scholar
  24. Cousin JCB, Baudin-Laurencin F, Gabaudan J (1987) Ontogeny of enzymatic activities in fed y fasting turbot, Scophthalmus maximus L. J Fish Biol 30:15–33CrossRefGoogle Scholar
  25. Cuvier-Péres A, Kestemont P (2002) Development of some digestive enzymes in Eurasian perch larvae Perca fluviatilis. Fish Physiol Biochem 24:279–285Google Scholar
  26. Darias MJ, Murray HM, Gallant JW, Astola A, Douglas SE, Yúfera M, Martínez-Rodríguez G (2006) Characterization of a partial α-amylase clone from red porgy (Pagrus pagrus): expression during larval development. Comp Biochem Physiol 143:209–218CrossRefGoogle Scholar
  27. DelMar EG, Largman C, Broderick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320Google Scholar
  28. Díaz-López M, Moyano-lópez FJ, Alarcón-López FJ, García-Carreño FL, Navarrete del Toro MA (1998) Characterization of fish acid proteases by substrate-gel electrophoresis. Comp Biochem Physiol 121B:369–377Google Scholar
  29. Dimes LE, García-Carreño FL, Haard NF (1994) Estimation of protein digestibility. III. Studies on digestive enzyme from the pyloric caeca of rainbow trout and salmon. Comp Biochem Physiol 109:349–360CrossRefGoogle Scholar
  30. Erlanger B, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278PubMedCrossRefGoogle Scholar
  31. Essed Z, Fernández I, Alarcón FJ, Moyano FJ (2002) Caracterización de la actividad proteasa digestiva de atún rojo Thunnus thynnus (Linnaeus, 1758). Bol Inst Esp Oceanogr 18(1–4):99–107Google Scholar
  32. Fabillo MD, Herrera AA, Abucay JS (2004) Effects of delayed first feeding on the development of the digestive tract y skeletal muscles of Nile Tilapia, Oreochromis niloticus L. In: Proceedings 6th international symposium on Tilapia in aquaculture Philippine International Convention Center, Roxas Boulevard, Manila, Philippines, pp 301–315Google Scholar
  33. Fange R, Grove D (1979) Digestion. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol 8. Academic Press, NY, pp 161–260Google Scholar
  34. Folk JE, Schirmer EW (1963) The porcine pancreatic carboxypeptidase α system. J Biol Chem 238:3884–3894PubMedGoogle Scholar
  35. García-Carreño FL, Dimes LE, Haard NF (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65–69PubMedCrossRefGoogle Scholar
  36. García-Carreño FL, Albuquerque-Cavalcanti C, Navarrete del Toro MA, Zaniboni-Filho E (2002) Digestive proteinases of Brycon orbignyanus (Characidae, Teleostei): characteristics and effects of protein quality. Comp Biochem Physiol 132B:343–352Google Scholar
  37. García-Ortega A, Verreth JAJ, Coutteau P, Segner H, Huisman EA, Sorgeloos P (1998) Biochemical and enzymatic characterization of decapsulated cysts and nauplii of the brine shrimp Artemia at different developmental stages. Aquaculture 161:501–514CrossRefGoogle Scholar
  38. Gawlicka A, Parent B, Horn MH, Ross N, Opstad I, Torrinsen OJ (2000) Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture 184:303–314CrossRefGoogle Scholar
  39. Gisbert E, Sarasquete MC, Willot P, Castelló-Orvay F (1999) Histochemistry of the development of the digestive system of Siberian sturgeon during early ontogeny. J Fish Biol 55:596–616CrossRefGoogle Scholar
  40. Gisbert E, Gimenez G, Fernandez I, Kotzamanis Y, Estevez A (2009) Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 287(3):381–387CrossRefGoogle Scholar
  41. Gracia-López V, Kiewek-Martínez M, Maldonado-García M (2004) Effects of temperature and salinity on artificially reproduced eggs and larvae of the leopard grouper Mycteroperca rosacea. Aquaculture 237:485–498CrossRefGoogle Scholar
  42. Gracia-López V, Rosas-Vázquez C, Brito-Pérez R (2006) Effects of salinity on physiological conditions in juvenile common snook Centropomus undecimalis. Comp Biochem Physiol 145A(3):340–345Google Scholar
  43. Green BS, McCormick MI (2001) Ontogeny of the digestive and feeding systems in the anemone fish Amphiprion melanopus. Environ Biol Fishes 61:73–83CrossRefGoogle Scholar
  44. Grier H (2000) Ovarian germinal epithelium and folliculogenesis in the common snook, Centropomus undecimalis (Teleostei: centropomidae). J Morphol 243(3):265–281PubMedCrossRefGoogle Scholar
  45. Grier HJ, Taylor RG (1998) Testicular maturation and regression in the common snook. J Fish Biol 53(3):521–542CrossRefGoogle Scholar
  46. Hajjou M, Smine A, Guerard F, Le Gal Y (1995) Purification and some properties of a carboxypeptidase B from dogfish Scyliorhinus canicula. Comp Biochem Physiol 110B(4):791–798Google Scholar
  47. Harpaz S, Uni Z (1999) Activity of intestinal mucosal brush border membrane enzymes in relation to the feeding habits of three aquaculture fish species. Comp Biochem Physiol 124A:155–160Google Scholar
  48. Hidalgo MC, Urea E, Sanz A (1999) Comparative study of digestive enzymes in fish with different nutricional habits. Proteolytic and amylase activities. Aquaculture 170:267–283CrossRefGoogle Scholar
  49. Hjelmeland K, Huse I, Jorgensen T, Molvik G, Raa J (1983) Trypsin and trypsinogen as indices of growth and survival potential of cod (Gadus morhua L.) larvae. Flodevigen Rapp 3:1–17Google Scholar
  50. Hoehne-Reitan K, Kjorsvik E, Reitan KI (2001) Bile saltdependent lipase in larval turbot, as influenced by density and lipid content of fed prey. J Fish Biol 58:746–754Google Scholar
  51. Holt JG, Faulk CK, Schwarz MH (2007) A review of the larviculture of cobia Rachycentron canadum, a warm water marine fish. Aquaculture 268:181–187CrossRefGoogle Scholar
  52. Ibarra-Castro L, Duncan NJ (2007) GnRHa-induced spawning of wild-caught spotted rose snapper Lutjanus guttatus. Aquaculture 272:737–746CrossRefGoogle Scholar
  53. Igbokwe EC, Downe AER (1978) Electrophoretic and histochemical comparison of three strains of Aedes aegypti. Comp Biochem Physiol 60B:131–136Google Scholar
  54. Komar C, Turnbull JF, Roque A, Fajer E, Duncan NJ (2004) Effect of water treatment and aeration on the percentage hatch of demersal, adhesive eggs of the bullseye puffer (Sphoeroides annulatus). Aquaculture 229:147–158CrossRefGoogle Scholar
  55. Kunitz M (1947) Crystalline soybean trypsin inhibitor II. General properties. J Gen Physiol 30:291–310Google Scholar
  56. Kurokawa T, Suzuki T (1996) Formation of the diffuse pancreas and the development of digestive enzyme synthesis in larvae of the Japanese flounder Paralichthys olivaceus. Aquaculture 141:267–276CrossRefGoogle Scholar
  57. Kvåle A, Mangor-Jensen A, Moren M, Espe M, Hamre K (2007) Development and characterization of some intestinal enzymes in Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture 264:457–468CrossRefGoogle Scholar
  58. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  59. Lazo JP, Mendoza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205CrossRefGoogle Scholar
  60. Maraux S, Louvard D, Baratti J (1973) The aminopeptidase from hog-intestinal brush border. Biochim Biophys Acta 321:282–295Google Scholar
  61. Martínez MI, Moyano FJ, Fernández-Díaz C, Yúfera M (1999) Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis). Fish Physiol Biochem 21:317–323Google Scholar
  62. Morais S, Rojas-García CR, Conceição LEC, Rønnestad I (2005) Digestion and absorption of a pure triacylglycerol and a free fatty acid by Clupea harengus L. larvae. J Fish Biol 67:223–238CrossRefGoogle Scholar
  63. Moyano FJ, Diaz M, Alarcon FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead sea bream (Sparus aurata). Fish Physiol Biochem 15:121–130CrossRefGoogle Scholar
  64. Moyano FJ, Barros AM, Prieto A, Cañavate JF, Cardenas S (2005) Evaluación de la ontogenia de enzimas digestivas en larvas de hurta, Pagrus auriga (Pisces: Sparidae). AquaNIC 22:39–47Google Scholar
  65. Munilla-Morán R, Saborido-Rey F (1996) Digestive enzymes in marine species. I. Proteinase activities in gut from red fish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus). Comp Biochem Physiol 113B:395–402Google Scholar
  66. Munilla-Morán R, Stark JR (1990) Metabolism in marine flatfish—VI. Effect of nutritional state on digestion in turbor, Scophthalmus maximus (L.). Comp Biochem Physiol 95B(3):625–653Google Scholar
  67. Murray HM, Gallant JW, Perez-Casanova JC, Johnson SC, Douglas SE (2003) Ontogeny of lipase expression in winter flounder. J Fish Biol 62:816–833CrossRefGoogle Scholar
  68. Naz M (2008) The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis, Müller) and Artemia during the enrichment and starvation periods. Fish Physiol Biochem 34:391–404Google Scholar
  69. Oozeki Y, Baley M (1995) Ontogenetic development of digestive enzyme activities in larval walleye pollock, Theragra chalcogramma. Mar Biol 122:177–186Google Scholar
  70. Péres A, Cahu CL, Zambonino-Infante JL, Legall MM, Quazuguel P (1996) Amylase and trypsin responses to intake of dietary carbohydrate and protein depend on the developmental stage in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 15:237–242CrossRefGoogle Scholar
  71. Péres A, Cahu CL, Zambonino-Infante JL (1997) Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 16:479–485CrossRefGoogle Scholar
  72. Ramirez AB, Cerqueira VR (1994) Feeding behavior of young robalo (Centropomus undecimalis Bloch, 1792). I. The effect of chemical attractants. Aquaculture 124(1):289–290CrossRefGoogle Scholar
  73. Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 170:465–473CrossRefGoogle Scholar
  74. Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (2002) Digestive enzymes profile of Solea senegalensis post larvae fed Artemia and a compound diet. Fish Physiol Biochem 27:61–69CrossRefGoogle Scholar
  75. Rivera SM (2003) Purification and characterization of trypsin from intestinal and pyloric caecal tissues of the silk snapper, Lutjanus vivanus (Cuvier 1828). Master’s thesis, p 40Google Scholar
  76. Robyt JF, Whelan WJ (1968) The α-amylase. In: Radley JA (ed) Starch and its derivates. Chapman and Hall, London, pp 430–497Google Scholar
  77. Rodríguez MAR (2004) Purification and kinetic characterization of trypsin from the intestine and pyloric caeca of the white grunt, Haemulon plumierii, (Lacepède, 1801). Master’s thesis, p 29Google Scholar
  78. Sáenz RM, Alarcón FJ, Martínez MI, Ruiz F, Díaz M, Moyano FJ (2005) Caracterización de las proteasas digestivas del lenguado senegalés Solea senegalensis Kaup, 1858. Bol Inst Esp Oceanogr 21(1–4):95–104Google Scholar
  79. Shaozhen F, Wensheng L, Haoran L (2008) Characterization and expression of the pepsinogen C gene and determination of pepsin-like enzyme activity from orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol 149B:275–284Google Scholar
  80. Sherwood NM, Grier HJ, Warby C, Peute J, Taylor RG (1993) Gonadotropin-releasing hormones, including a novel form, in snook Centropomus undecimalis, in comparison with forms in black sea bass Centropristis striata. Regul Pept 46(3):523–534PubMedCrossRefGoogle Scholar
  81. Sidell BD, Hazel JR (2002) Triacylglycerol lipase activities in tissues of Antarctic fishes. Polar Biol 25:517–522CrossRefGoogle Scholar
  82. Smith TK, Tapia-Salazar M, Cruz-Suarez LE, Ricque-Marie D (2000) Feed-borne biogenic amines: natural toxicants or growth promoters? In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R (eds) Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. Mérida, Yucatán, México, pp 24–32, 19–22 NovGoogle Scholar
  83. Souza AAG, Amaral IPG, Albérico RES, Carvalho LB, Bezerra RS (2007) Trypsin-like enzyme from intestine and pyloric caeca of spotted goatfish (Pseudupeneus maculatus). Food Chem 100:1429–1434CrossRefGoogle Scholar
  84. Srivastava AS, Kurokawa T, Suzuki T (2002) mRNA expression of pancreatic enzyme precursors and estimation of protein digestibility in first feeding larvae of the Japanese flounder, Paralichthys olivaceus. Comp Biochem Physiol l32A:629–635Google Scholar
  85. Stephen R, Shafland P (1982) Larval development of snook, Centropomus undecimalis (Pisces: Centropomidae). Copeia 3:618–627Google Scholar
  86. Tanji M, Yakabe E, Kubota K, Kageyama T, Ichinose M, Miki K, Ito H, Takahashi K (2009) Structural and phylogenetic comparison of three pepsinogens from Pacific bluefin tuna: molecular evolution of fish pepsinogens. Comp Biochem Physiol 152B:9–19Google Scholar
  87. Tarcisio T, Vinicius R, Brown J (2005) Early weaning of fat snook (Centropomus parallelus Poey 1864) larvae. Aquaculture 253:334–342Google Scholar
  88. Ueberschäer B (1993) Measurement of proteolytic enzyme activity: significance and application in larval fish research. In: Walther BT, Fyhn HJ (eds) Physiological and biochemical aspects of fish development, part III. Univ. of Bergen, Norway, pp 233–239Google Scholar
  89. Ugolev AM, Yegorova VV, Kuz’mina VV, Gruzdkov AA (1983) Comparative molecular characterization of membrane digestion on fish and mammals. Comp Biochem Physiol 76B:627–635Google Scholar
  90. van Tilbeurgh H, Sarda L, Verger R, Cambillau C (1992) Structure of the pancreatic lipase-procolipase complex. Nature 359:159–162PubMedCrossRefGoogle Scholar
  91. Vendrell J, Querol E, Avilés FX (2000) Metallocarboxypeptidases and their protein inhibitors. Structure, function and biomedical properties. Biochim Biophys Acta 1477:284–298PubMedCrossRefGoogle Scholar
  92. Versaw W, Cuppett SL, Winters DD, Williams LE (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci 54:232–254CrossRefGoogle Scholar
  93. Versichelle D, Léger P, Lavens P, Sorgeloos P (1989) L’utilisation d’artémia. In: Barnabé G (ed) Aquaculture. Technique et Documentation, Lavoisier, Paris, pp 241–259Google Scholar
  94. Wainwright PC, Huskey SH, Turingan RG, Carroll AM (2006) Ontogeny of suction feeding capacity in snook, Centropomus undecimalis. J Exp Zool 305(3):246–252CrossRefGoogle Scholar
  95. Walter HE (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyern HJ (ed) Methods of enzymatic analysis, vol V. Verlag Chemie, Weinham, pp 270–277Google Scholar
  96. Williams DE, Reisfeld RA (1964) Disc electrophoresis in polyacrylamide gels: extension to new conditions of pH and buffers. Ann N Y Acad Sci 121:373–381PubMedCrossRefGoogle Scholar
  97. Yañes-Roca C, Rhody N, Nystrom M, Main KL (2009) Effects of fatty acid composition and spawning season patterns on egg quality and larval survival in common snook. Aquaculture 287(3):335–340CrossRefGoogle Scholar
  98. Yoshinaka R, Sato M, Tanaka H, Ikeda S (1985) Some enzymatic properties and digestive function of a pancreatic metalloproteinase in the catfish (Parasilurus asotus). Comp Biochem Physiol 80B(2):223–226Google Scholar
  99. Zambonino-Infante JL, Cahu C (1994) Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 12(5):399–408CrossRefGoogle Scholar
  100. Zambonino-Infante JL, Cahu CL (1999) High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development. J Nutr 129:1195–1200Google Scholar
  101. Zambonino-Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol 130C:477–487Google Scholar
  102. Zambonino-Infante JL, Cahu CL (2007) Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture 268:98–105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • L. D. Jimenez-Martinez
    • 1
  • C. A. Alvarez-González
    • 1
  • D. Tovar-Ramírez
    • 4
  • G. Gaxiola
    • 2
  • A. Sanchez-Zamora
    • 2
  • F. J. Moyano
    • 3
  • F. J. Alarcón
    • 3
  • G. Márquez-Couturier
    • 1
  • E. Gisbert
    • 5
  • W. M. Contreras-Sánchez
    • 1
  • N. Perales-García
    • 1
  • L. Arias-Rodríguez
    • 1
  • J. R. Indy
    • 1
  • S. Páramo-Delgadillo
    • 1
  • I. G. Palomino-Albarrán
    • 2
  1. 1.DACBIOL Laboratorio de AcuaculturaUniversidad Juárez Autónoma de TabascoVillahermosaMexico
  2. 2.Unidad Multidisciplinaria de Docencia e Investigación, Facultad de CienciasUNAMSisalMexico
  3. 3.Departamento de Biología Aplicada, Escuela Politécnica SuperiorUniversidad de AlmeríaLa Cañada de San Urbano, AlmeríaSpain
  4. 4.Centro de Investigaciones Biológicas del Noroeste (CIBNOR)La PazMexico
  5. 5.IRTA – Sant Carles de la RàpitaSant Carles de la Rapita, TarragonaSpain

Personalised recommendations