Advertisement

Fish Physiology and Biochemistry

, Volume 36, Issue 3, pp 779–785 | Cite as

Effect of dietary protein source and time on alkaline proteolytic activity of Nile tilapia (Oreochromis niloticus)

  • Mayra L. González-Félix
  • Francisco J. Castillo-Yañez
  • Víctor M. Ocaño-Higuera
  • Martin Perez-Velazquez
  • Venecia Cota-Moreno
  • José Lozano-Taylor
Article

Abstract

A 4 × 3 factorial study was conducted to evaluate the effect of four experimental diets (a control diet and a 0, 50, and 100% fish meal replacement diet) and the period of time Nile tilapia, Oreochromis niloticus, were fed those diets (0, 20, and 40 days) on the alkaline proteolytic activity of the animals’ digestive tract, as well as their potential interaction. Significant differences (at P < 0.05) and a significant interaction were observed among dietary treatments for the alkaline proteolytic activity of tilapia after 40 days of feeding. This study confirmed that, under these experimental conditions, a 50% fish meal replacement formulation elicited the highest alkaline proteolytic activity in the digestive tract of tilapia, which resulted in the highest final weight and specific growth rate (SGR), but further research is needed to establish the relative contribution of the alkaline proteases to the overall proteolytic activity of this omnivorous fish species.

Keywords

Nile tilapia Dietary protein Alkaline proteolytic activity Digestive enzymes 

References

  1. Bezerra R, Lins E, Alencar R, Paiva M, Chaves M, Coelho L, Carvalho L (2005) Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Proc Biochem 40:1829–1834CrossRefGoogle Scholar
  2. Borgeson TL, Racz VJ, Wilkie DC, White LJ, Drew MD (2006) Effect of replacing fishmeal and oil with simple or complex mixtures of vegetables ingredients in diets fed to Nile Tilapia (Oreochromis niloticus). Aquac Nutr 12:141–149CrossRefGoogle Scholar
  3. Buddington RK, Chen JW, Diamond J (1987) Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J Physiol 393:261–281CrossRefGoogle Scholar
  4. Cahu CL, Zambonino Infante JL, Peres A, Quazuguel P, Le Gall MM (1998) Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes. Aquaculture 161:479–489CrossRefGoogle Scholar
  5. Coyle SD, Mengel GJ, Tidwell JH, Webster CD (2004) Evaluation of growth, feed utilization, and economics of hybrid tilapia, Oreochromis niloticus × Oreochromis aureus, fed diets containing different protein sources in combination with distillers dried grains with solubles. Aquac Res 35:365–370CrossRefGoogle Scholar
  6. Deyab MS, El-Saidy DMSD (2002) Complete replacement of fish meal by soybean meal with dietary l-lysine supplementation for Nile Tilapia. J World Aquac Soc 33:297–306CrossRefGoogle Scholar
  7. El-Beltagy AE, El-Adawy TA, Rahma EH, El-Bedawey AA (2005) Purification and characterization of an alkaline protease from the viscera of bolti fish (Tilapia nilotica). J Food Biochem 29:445–458CrossRefGoogle Scholar
  8. El-Saidy DMSD, Gaber MMA (2003) Replacement of fish meal with a mixture of different plant protein sources in juvenile Nile tilapia, Oreochromis niloticus (L.) diets. Aquac Res 34:1119–1127CrossRefGoogle Scholar
  9. El-Sayed AFM (1990) Long term evaluation of cottonseed meal as a protein source for Nile tilapia Oreochomis niloticus (L.). Aquaculture 84:315–320CrossRefGoogle Scholar
  10. El-Sayed AFM (1999) Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture 179:149–168CrossRefGoogle Scholar
  11. El-Sayed AFM (2006) Tilapia culture, 1st edn. CABI Publishing, Oxfordshire, 277 pCrossRefGoogle Scholar
  12. FAO (2006) State of world aquaculture 2006. FAO Fisheries Technical Paper. No. 500. Rome, Italy, 134 pGoogle Scholar
  13. Fitzsimmons K, González-Alanis P (2005) Tilapia culture—a review. Memoirs of the 2nd national meeting of the tilapia net. Segundo Foro Internacional de Acuicultura. Instituto Nacional de la Pesca. SAGARPA. Hermosillo, Sonora, México, pp 115–144Google Scholar
  14. Furuya WM, Petazo LE, Barros MM, Petazo AC, Furuya VRB, Miranda EC (2004) Use of ideal protein concept for precision formulation of amino acid levels in fish-meal-free diets for juvenile Nile tilapia (Oreochromis niloticus L.). Aquac Res 35:1110–1116CrossRefGoogle Scholar
  15. Gaber MMA (2006) The effects of plants-protein-based diets supplemented with Yucca on growth, digestibility, and chemical composition of Nile tilapia (Oreochromis niloticus, L) fingerlings. J World Aquacult Soc 37:74–81CrossRefGoogle Scholar
  16. García-Carreño FL, Hernández-Cortés MP, Haard NF (1994) Enzymes with peptidase and proteinase activity from digestive system of freshwater and marine decapods. J Agric Food Chem 42:1456–1461CrossRefGoogle Scholar
  17. German DP, Horn MH, Gawlicka A (2004) Digestive enzyme activities in herbivorous and carnivorous Prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol Biochem Zool 77:789–804CrossRefGoogle Scholar
  18. González-Félix ML, Perez-Velazquez M, Villalba-Villalba AG, Civera-Cerecedo R, Ezquerra JM, Goytortúa-Bores E (2009) Tailoring a diet for Nile tilapia (Oreochromis niloticus) culture in northwest Mexico. J Mar Sci Technol (accepted for publication)Google Scholar
  19. Haard NF, Simpson BK (2000) Seafood enzymes: utilization and influence on postharvest seafood quality. Marcel Dekker, Inc., New York, 670 ppGoogle Scholar
  20. Halver JE, Hardy RW (2002) Fish nutrition, 3rd edn. Academic Press, San Diego, 824 ppGoogle Scholar
  21. Hidalgo MC, Urea E, Sanz A (1999) Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170:267–283CrossRefGoogle Scholar
  22. Horn MH, Neighbors MA, Murray SN (1986) Herbivore responses to a seasonally fluctuating food supply: growth potential of two temperate intertidal fishes based on the protein and energy assimilated from their macroalgal diets. J Exp Mar Biol Ecol 103:217–234CrossRefGoogle Scholar
  23. Lazo JP, Mendoza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205CrossRefGoogle Scholar
  24. Martínez A, Serra J (1989) Proteolytic activities in the digestive tract of anchovy (Engraulis encrasicholus). Comp Biochem Physiol 93:61–66Google Scholar
  25. Mbahinzireki GB, Dabrowski K, Lee KJ, El-Saidy D, Wisner ER (2001) Growth, feed utilization and body composition of tilapia (Oreochromis niloticus) fed with cottonseed meal based diets in a recirculating system. Aquac Nutr 7:189–200CrossRefGoogle Scholar
  26. Miles RD, Chapman FA (2006) The benefits of fish meal in aquaculture diets. Publication FA122, Department of Fisheries and Aquatic Sciences, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. URL http://edis.ifas.ufl.edu/FA122. Accessed 21 Jul 2008
  27. OEIDRUS (2005) Oficina Estatal de Información para el Desarrollo Rural Sustentable del Estado de Sonora. URL http://www.oeidrus-sonora.gob.mx/viewfile.php?tipo=A&id=212&url=./docs/prod_acu_05.swf. Accessed 9 Jun 2008
  28. Olvera-Novoa MA, Olivera-Castillo L, Martínez-Palacios CA (2002) Sunflower seed meal as a protein source in diets for Tilapia rendalli (Bounlanger, 1896) fingerlings. Aquac Res 23:223–229CrossRefGoogle Scholar
  29. Peres A, Zambonino-Infante JL, Cahu C (1998) Dietary regulation of activities and mRNA levels of trypsin and amylase in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 19:145–152CrossRefGoogle Scholar
  30. Shiau SY, Chuang JL, Sun CL (1987) Inclusion of soybean meal in Tilapia (Oreochromis niloticus × O. aureus) diets at two protein levels. Aquaculture 65:251–261CrossRefGoogle Scholar
  31. Shiau SY, Kwok CC, Hwang JY, Chen CC, Lee SL (1989) Replacement of fishmeal with soybean meal in male Tilapia (Oreochromis niloticus × O. aureus) fingerlings diets at a suboptimal protein level. J World Aquac Soc 20:230–235CrossRefGoogle Scholar
  32. Simpson BK, Haard NF (1987) Cold adapted enzymes from fish. In: Knorr D (ed) Food biotechnology. Marcel Dekker, Inc., New York, pp 495–527Google Scholar
  33. Tengjaroenkul B, Smith B, Caceci T, Smith S (2000) Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus. Aquaculture 182:317–327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mayra L. González-Félix
    • 1
  • Francisco J. Castillo-Yañez
    • 2
  • Víctor M. Ocaño-Higuera
    • 2
  • Martin Perez-Velazquez
    • 1
  • Venecia Cota-Moreno
    • 2
  • José Lozano-Taylor
    • 2
  1. 1.Departamento de Investigaciones Científicas y TecnológicasUniversidad de SonoraHermosilloMexico
  2. 2.Departamento de Ciencias Químico-BiológicasUniversidad de SonoraHermosilloMexico

Personalised recommendations