Fish Physiology and Biochemistry

, Volume 36, Issue 3, pp 731–740 | Cite as

Comparison of larval thermal maxima between Fundulus heteroclitus and F. grandis

  • Stacy N. Galleher
  • Matthew R. Gilg
  • Kelly J. Smith
Article

Abstract

Fundulus heteroclitus and F. grandis are resident salt marsh fishes that overlap in distribution over a narrow range in northeastern Florida. The objective of the present study was to examine whether the limits of the species’ ranges could be explained by differences in thermal tolerance. Two populations of each species were collected and then spawned in the laboratory, and 9-day-old larvae were used for critical thermal maxima trials. Mean LOE temperatures of larvae ranged from 43.04 to 43.65°C and showed little difference between species. Therefore, differences in high temperatures experienced cannot account for the differences of the distributions of the two species. Condition-specific competition may play a greater role in determining the observed range of the two species.

Keywords

Fundulus grandis Fundulus heteroclitus Thermal tolerance 

Notes

Acknowledgments

The authors thank I. Gonzalez, E. Gonzalez, S. Jermanus and R. Norris for help with field collections and during experimental trials. Thanks to J.D. Hatle and G. Ehrlinger for critical reading of the manuscript, D.C. Moon for statistical analysis, and R. Gleeson and K. Petrinec for GTM NERR data. Support for the project was through funding from the University of North Florida Biology department and the Coastal Biology Flagship program.

References

  1. Able KW, Hagan SM, Kovitvongsa K, Brown SA, Lamonaca JC (2007) Piscivory by the mummichog (Fundulus heteroclitus): evidence from the laboratory and salt marshes. J Exp Mar Bio Ecol 345:26–37CrossRefGoogle Scholar
  2. Bacon EJ, Neill WH, Kilambi RV (1967) Temperature selection and heat resistance of the Mosquito fish, Gambusia affinis. Proceedings of the 21st annual conference of the southeastern association of the game and fish commissioners, pp 411–416Google Scholar
  3. Becker CD, Genoway RG (1979) Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environ Biol Fish 4(3):245–256CrossRefGoogle Scholar
  4. Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fish 58:237–275CrossRefGoogle Scholar
  5. Bennett WA, Beitinger TL (1997) Temperature tolerance of the sheepshead minnow, Cyprinodon variegatus. Copeia 1997(1):77–87CrossRefGoogle Scholar
  6. Brown JH, Feldmeth CR (1971) Evolution in constant and fluctuating environments: thermal tolerances of desert pupfish (Cyprinodon). Evol Int J Org Evol 25:390–398Google Scholar
  7. Bulger AJ (1984) A daily rhythm in heat tolerance n the salt marsh fish Fundulus heteroclitus. J Exp Biol 230:11–16Google Scholar
  8. Bulger AJ, Schultz RJ (1982) Origin of thermal adaptations in northern versus southern populations of a unisexual hybrid fish. Evol Int J Org Evol 36(5):1041–1050CrossRefGoogle Scholar
  9. Bulger AJ, Tremaine SC (1985) Magnitude of seasonal effects on heat tolerance in Fundulus heteroclitus. Physiol Zool 58(2):197–204CrossRefGoogle Scholar
  10. Deacutis CF (1978) Effect of thermal shock on predator avoidance by larvae of two fish species. Trans Am Fish Soc 107(4):632–635CrossRefGoogle Scholar
  11. DiMichele L, Taylor MH (1980) The environmental control of hatching in Fundulus heteroclitus. J Exp Zool 214:181–187CrossRefGoogle Scholar
  12. DiMichele L, Westerman ME (1997) Geographic variation in development rate between populations of the telost Fundulus heteroclitus. Mar Biol 128:1–7CrossRefGoogle Scholar
  13. Duggins CF Jr, Karlin AA, Mousseau TA, Relyea KG (1995) Analysis of a hybrid zone in Fundulus majalis in a northeastern Florida ecotone. Heredity 74:117–128CrossRefGoogle Scholar
  14. Dunson WA, Travis J (1991) The role of abiotic factors in community organization. Am Nat 138(5):1067–1091CrossRefGoogle Scholar
  15. Fangue NA, Hofmeister M, Schulte PM (2006) Intraspecific variation in thermal tolerance and heat shock protein gene expression I common killifish, Fundulus heteroclitus. J Exp Biol 209:2859–2872CrossRefGoogle Scholar
  16. Feldmeth CR, Stone EA, Brown JH (1974) An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. J Comp Physiol 89:39–44CrossRefGoogle Scholar
  17. Fields R, Lowe SS, Kaminski C, Whitt GS, Philipp DP (1987) Critical and chronic thermal maxima of northern and Florida largemouth bass and their reciprocal F1 and F2 hybrids. Trans Am Fish Soc 116:856–863CrossRefGoogle Scholar
  18. Fry FEJ (1947) Effects of the environment on animal activity. Univ Toronto Studies in Biol, series no. 55, Publ Ont Fish Res Lab 68:1–62Google Scholar
  19. Garside ET, Chin-Yuen-Kee ZK (1972) Influence of osmotic stress on upper lethal temperatures in the cyprinodontid fish Fundulus heteroclitus (L.). Can J Zool 50:787–791CrossRefGoogle Scholar
  20. Gonzalez I, Levin M, Jermanus S, Watson B, Gilg MR (2009) Genetic assessment of species ranges in Fundulus heteroclitus and F. grandis. Southeastern Nat 8(2):227–243CrossRefGoogle Scholar
  21. Hutchison VH (1961) Critical thermal maxima in salamanders. Physiol Zool 34:92–125CrossRefGoogle Scholar
  22. Johnson CR (1976) Diel variation in the thermal tolerance of Gambusia affinis affinis (Pisces: Pociliidae). Comp Biochem Physiol 55A:337–340CrossRefGoogle Scholar
  23. Kavaliers M (1980) Social groupings and circadian activity of the killifish, Fundulus heteroclitus. Biol Bull 158:69–76CrossRefGoogle Scholar
  24. Kneib RT (1986) The role of Fundulus heteroclitus in salt marsh trophic dynamics. Am Zool 26:259–269CrossRefGoogle Scholar
  25. Lipcius RN, Subrahmanyam CB (1986) Temporal factors influencing killifish abundance and recruitment in Gulf of Mexico salt marshes. Estuar Coast Shelf Sci 22(1):101–114CrossRefGoogle Scholar
  26. Magnuson JJ, Crowder LB, Medvick PA (1979) Temperauture as an ecological resource. Am Zool 19(1):331–343CrossRefGoogle Scholar
  27. Middaugh DP, Dean JM, Domey RG, Floyd G (1978) Effect of thermal stress and total residual chlorination on stages of the Mummichog Fundulus heteroclitus. Mar Biol 46(1):1–8CrossRefGoogle Scholar
  28. Otto RG (1974) The effects of acclimation to cyclic thermal regimes on heat tolerance of Western Mosquitofish. Trans Am Fish Soc 103(2):331–335CrossRefGoogle Scholar
  29. Powers DA, Ropson I, Brown DC, Van Benden R, Cashon R, Gonzalez-Villasenor LI, DiMichele JA (1986) Genetic variation in Fundulus heteroclitus: geographic distribution. Am Zool 26:131–144CrossRefGoogle Scholar
  30. Strange KT, Vokoun JC, Noltie DB (2002) Thermal tolerance and growth differences in Orangethroad Darter (Etheostoma spectabile) from thermally contrasting adjoining streams. Am Midl Nat 148:120–128CrossRefGoogle Scholar
  31. Sylvester JR (1975) Critical thermal maxima of three species of Hawaiian estuarine fish: a comparative study. J Fish Biol 7:257–262CrossRefGoogle Scholar
  32. Talbot CW, Able KW (1984) Composition and distribution of larval fishes in New Jersey high marshes. Estuaries 7:434–443 CrossRefGoogle Scholar
  33. Weisberg SB (1986) Competition and coexistence among four estuarine species of Fundulus. Am Zool 26(1):249–257CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stacy N. Galleher
    • 1
  • Matthew R. Gilg
    • 1
  • Kelly J. Smith
    • 1
  1. 1.Department of BiologyUniversity of North FloridaJacksonvilleUSA

Personalised recommendations