Skip to main content
Log in

Vitamin K-dependent γ-glutamylcarboxylase in Atlantic salmon (Salmo salar L.)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Due to problems with bone deformities in farmed Atlantic salmon, there is a growing interest in the possible involvement of vitamin K in normal bone development, and sensitive biomarkers for evaluating vitamin K status are therefore needed. The vitamin K-dependent (VKD) enzyme γ-glutamylcarboxylase (GGCX, EC 6.4.x.x) requires vitamin K as a cofactor for its post-translational modification of glutamic acid (Glu) residues to γ-carboxyglutamic acid (Gla) residues in VKD proteins, and is required for their function in haemostasis and bone metabolism. The present study was designed to evaluate the enzyme assay for GGCX activity in isolated liver microsomes and its distribution in the tissues of Atlantic salmon. The effect of KH2 and menadione on the GGCX activity in salmon liver was also compared. Results from the present study show a widespread tissue distribution and expression of GGCX in Atlantic salmon. The GGCX activity and ggcx expression in all bony tissues examined imply the presence of vitamin K, and suggest the involvement of vitamin K in bone metabolism of Atlantic salmon. We propose the GGCX assay as a sensitive marker for vitamin K status, and confirm that menadione does not work as a cofactor for GGCX in Atlantic salmon liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bandyopadhyay PK (2008) Vitamin K-dependent γ-glutamylcarboxylation: an ancient posttranslational modification. Vitam Horm 78:157–184. doi:10.1016/S0083-6729(07)00008-8

    Article  CAS  Google Scholar 

  • Bandyopadhyay PK, Garrett JE, Shetty RP, Keate T, Walker CS, Olivera BM (2002) Gamma-glutamyl carboxylation: an extracellular posttranslational modification that antedates the divergence of molluscs, arthropods, and chordates. Proc Natl Acad Sci USA 99:1264–1269. doi:10.1073/pnas.022637099

    Article  CAS  Google Scholar 

  • Begley GS, Furie BC, Czerwiec E et al (2000) A conserved motif within the vitamin K-dependent carboxylase gene is widely distributed across animal phyla. J Biol Chem 275:36245–36249. doi:10.1074/jbc.M003944200

    Article  CAS  Google Scholar 

  • Berkner K (2000) The vitamin K-dependent carboxylase. J Nutr 130:1877–1880

    Article  CAS  Google Scholar 

  • Berkner KL (2008) Vitamin K-dependent carboxylation. Vitam Horm 78:131–156. doi:10.1016/S0083-6729(07)00007-6

    Article  CAS  Google Scholar 

  • Berkner KL, Pudota BN (1998) Vitamin K-dependent carboxylation of the carboxylase. Proc Natl Acad Sci USA 95:466–471. doi:10.1073/pnas.95.2.466

    Article  CAS  Google Scholar 

  • Boskey A, Gadaleta S, Gundberg C et al (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196. doi:10.1016/S8756-3282(98)00092-1

    Article  CAS  Google Scholar 

  • Buitenhuis HC, Soute BA, Vermeer C (1990) Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase. Biochim Biophys Acta 1034:170–175

    Article  CAS  Google Scholar 

  • Czerwiec E, Begley G, Bronstein M et al (2002) Expression and characterization of recombinant vitamin K-dependent γ-glutamyl carboxylase from invertebrate, Conus textile. Eur J Biochem 269:6162–6172. doi:10.1046/j.1432-1033.2002.03335.x

    Article  CAS  Google Scholar 

  • Dimuzio MT, Bhown M, Butler WT (1983) The biosynthesis of dentine γ-carboxyglutamic acid-containing protein by rat incisor odontoblasts in organ culture. Biochem J 216:249–257

    Article  CAS  Google Scholar 

  • Farzaneh-Far A, Proudfoot D, Shanahan C, Weissberg PL (2001) Vascular and valvar calcification: recent advances. Heart 85:13–17. doi:10.1136/heart.85.1.13

    Article  CAS  Google Scholar 

  • Ferland G (1998) The vitamin K-dependent proteins: an update. Nutr Rev 56:223–230

    Article  CAS  Google Scholar 

  • Furie B, Furie BC (1990) Molecular basis of vitamin K-dependent γ-carboxylation. Blood 75:1753–1762

    CAS  PubMed  Google Scholar 

  • Graff IE, Waagbø R, Fivelstad S, Vermeer C, Lie Ø, Lundebye AK (2002) A multivariate study on the effects of dietary vitamin K, vitamin D3 and calcium, and dissolved carbon dioxide on growth, bone minerals, vitamin status and health performance in smelting Atlantic salmon Salmo salar L. J Fish Dis 25:599–614. doi:10.1046/j.1365-2761.2002.00403.x

    Article  CAS  Google Scholar 

  • Graff IE, Krossøy C, Gjerdevik K, Julshamn K (2009) Influence of dietary menadione nicotinamide bisulphite (vitamin K3) and phylloquinone (vitamin K1) on Atlantic salmon (Salmo salar L.) tissue levels, determined by high-performance liquid chromatography with fluorescence detection. Aquacult Nutr (accepted)

  • Hanumanthaiah R, Thankavel B, Day K, Gregory M, Jagadeeswaran P (2001) Developmental expression of vitamin K-dependent gamma-carboxylase activity in zebrafish embryos: effect of warfarin. Blood Cells Mol Dis 27:992–999. doi:10.1006/bcmd.2001.0472

    Article  CAS  Google Scholar 

  • Horie-Inoue K, Inoue S (2008) Steroid and xenobiotic receptor mediates a novel vitamin K2 signalling pathway in osteoblastic cells. J Bone Miner Metab 26:9–12

    Article  CAS  Google Scholar 

  • Hubbard BR, Ulrich MMW, Jacobs M et al (1989) Vitamin K-dependent carboxylase: affinity purification from bovine liver by using a synthetic propeptide containing the γ-carboxylation recognition site. Proc Natl Acad Sci USA 86:6893–6897. doi:10.1073/pnas.86.18.6893

    Article  CAS  Google Scholar 

  • Jiang Y, Doolittle RF (2003) The evolution of vertebrate blood coagulation as viewed from comparison of puffer fish and sea squirt genomes. Proc Natl Acad Sci USA 100:7527–7532. doi:10.1073/pnas.0932632100

    Article  CAS  Google Scholar 

  • Krossøy C, Waagbø R, Fjelldal PG et al (2008) Dietary menadione nicotinamide bisulphite (vitamin K3) does not affect growth or bone health in first-feeding fry of Atlantic salmon (Salmo salar L.). Aquacult Nutr (in press). doi:10.1111/j.1365-2095.2008.00633.x

    Article  CAS  Google Scholar 

  • Krossøy C, Ørnsrud R, Wargelius A (2009) Differential gene expression of bgp and mgp in trabecular and compact bone of Atlantic salmon (Salmo salar L.) vertebrae. J Anat (submitted)

  • Kulman JD, Harris JE, Nakazawa N, Ogasawara M, Satake M, Davie EW (2006) Vitamin K-dependent proteins in Ciona intestinalis, a basal chordate lacking a blood coagulation cascade. Proc Natl Acad Sci USA 103:15794–15799. doi:10.1073/pnas.0607543103

    Article  CAS  Google Scholar 

  • Lambert WE, De Leenher AP (1992) Vitamin K. In: De Leenher AP, Lambert WE, Nelis WE (eds) Modern chromatographic analysis of vitamins, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Larson AE, Friedman PA, Suttie JW (1981) Vitamin K-dependent carboxylase. J Biol Chem 256:11032–11035

    CAS  PubMed  Google Scholar 

  • Li T, Yang C, Stafford D (2000) Identification of Drosophila vitamin K-dependent gamma-glutamyl carboxylase. J Biol Chem 275:18291–18296. doi:10.1074/jbc.M001790200

    Article  CAS  Google Scholar 

  • Luo G, Ducy P, Mckee MD et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix Gla protein. Nature 386:78–81. doi:10.1038/386078a0

    Article  CAS  Google Scholar 

  • Manfioletti G, Brancolini C, Avanzi G, Schneider C (1993) The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative co-regulator in the blood coagulation cascade. Mol Cell Biol 13:4976–4985

    Article  CAS  Google Scholar 

  • Marchetti M, Tassinari M, Bauce G (1995) Tolerance of high dietary levels of menadione bisulphite-nicotinamide by rainbow trout, Oncorhynchus mykiss. Aquaculture 134:137–142. doi:10.1016/0044-8486(95)00044-3

    Article  CAS  Google Scholar 

  • Marchetti M, Tassinari M, Bauce G (1999) Stability of crystalline and coated vitamins during manufacture and storage of fish feeds. Aquacult Nutr 5:115–120. doi:10.1046/j.1365-2095.1999.00094.x

    Article  CAS  Google Scholar 

  • Morris D, Soute B, Vermeer C, Stafford D (1993) Characterization of the purified vitamin K-dependent gamma-glutamyl carboxylase. J Biol Chem 268:8735–8742

    CAS  PubMed  Google Scholar 

  • Nelsestuen G, Zytkovicz T, Howard J (1974) Mode of action of vitamin-K—identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem 249:6347–6350

    CAS  PubMed  Google Scholar 

  • Okano T, Nakagawa K (2005) Vitamin K-dependent gamma-glutamyl carboxylase activity of vitamin K compounds in liver and bone. J Bone Miner Res 20:S137

    Google Scholar 

  • Oldenburg J, Marinova M, Müller-Reible C, Watzka M (2008) The vitamin K cycle. Vitam Horm 78:35–62. doi:10.1016/S0083-6729(07)00003-9

    Article  CAS  Google Scholar 

  • Olsvik P, Lie K, Jordal AEO, Nilsen T, Hordvik I (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 6:21. doi:10.1186/1471-2199-6-21

    Article  Google Scholar 

  • Oxley A, Torstensen BE, Rustan AC, Olsen RE (2005) Enzyme activities of intestinal triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B 141:77–87. doi:10.1016/j.cbpc.2005.01.012

    Article  Google Scholar 

  • Potischman N, Freudenheim JL (2003) Biomarkers of nutritional exposure and nutritional status: an overview. J Nutr 133:873S–874S

    Article  CAS  Google Scholar 

  • Price PA (1988) Role of vitamin K-dependent proteins in bone metabolism. Annu Rev Nutr 8:565–583. doi:10.1146/annurev.nu.08.070188.003025

    Article  CAS  Google Scholar 

  • Proudfoot D, Shanahan C (2006) Molecular mechanisms mediating vascular calcification: role of matrix Gla protein. Nephrology 11:455–461. doi:10.1111/j.1440-1797.2006.00660.x

    Article  CAS  Google Scholar 

  • Romero EE, Velazquez-Estades LJ, Deo R, Schapiro B, Roth DA (1998a) Cloning of rat vitamin K-dependent γ-glutamylcarboxylase and developmentally regulated gene expression in postimplantation embryos. Exp Cell Res 243:334–346. doi:10.1006/excr.1998.4151

    Article  CAS  Google Scholar 

  • Romero EE, Deo R, Velazquez-Estades LJ, Roth DA (1998b) Cloning, structural organization, and stranscriptional activity of the rat vitamin K-dependent gamma-glutamyl carboxylase. Biochem Biophys Res Commun 248:783–788. doi:10.1006/bbrc.1998.8987

    Article  CAS  Google Scholar 

  • Sadowski JA, Esmon CT, Suttie JW (1976) Vitamin K-dependent carboxylase. J Biol Chem 251(9):2770–2776

    CAS  PubMed  Google Scholar 

  • Shah DV, Suttie JW (1978) Vitamin K-dependent carboxylase: increased activity in a hypoprothrombinemia state. Arch Biochem Biophys 191(2):571–577. doi:10.1016/0003-9861(78)90395-8

    Article  CAS  Google Scholar 

  • Shah DV, Suttie JW (1979) Vitamin K-dependent carboxylase: liver activity in various species. Proc Exp Biol Med 161:498–501

    Article  CAS  Google Scholar 

  • Stenflo J, Fernlund P, Egan W, Roepstor P (1974) Vitamin-K dependent modifications of glutamic-acid residues in prothrombin. Proc Natl Acad Sci USA 71:2730–2733. doi:10.1073/pnas.71.7.2730

    Article  CAS  Google Scholar 

  • Tabb M, Sun A, Zhou C et al (2003) Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 278:43919–43927. doi:10.1074/jbc.M303136200

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  Google Scholar 

  • Udagawa M (2000) Physiological role of vitamin K in fish—review. Jpn Agric Res Q 34(4):279–284

    CAS  Google Scholar 

  • Wallin R, Hutson S (2004) Warfarin and the vitamin K-dependent γ-carboxylation system. Trends Mol Med 10:299–302. doi:10.1016/j.molmed.2004.05.003

    Article  CAS  Google Scholar 

  • Wu SM, Cheung WF, Frazier D, Stafford DW (1991a) Cloning and expression of the cDNA for human g-glutamylcarboxylase. Science 254:1634–1636. doi:10.1126/science.1749935

    Article  CAS  Google Scholar 

  • Wu SM, Morris DP, Stafford DW (1991b) Identification and purification to near homogenity of the vitamin K-dependent carboxylase. Proc Natl Acad Sci USA 88:2236–2240. doi:10.1073/pnas.88.6.2236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is part of a research program called Roles of Fat Soluble Vitamins in Bone Development and Mineral Metabolism, funded by The Research Council of Norway (project # 153472). The authors would like to thank Dr. Rune Waagbø for constructive comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Ørnsrud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krossøy, C., Lock, EJ. & Ørnsrud, R. Vitamin K-dependent γ-glutamylcarboxylase in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 36, 627–635 (2010). https://doi.org/10.1007/s10695-009-9335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-009-9335-5

Keywords

Navigation