Fish Physiology and Biochemistry

, Volume 36, Issue 3, pp 627–635 | Cite as

Vitamin K-dependent γ-glutamylcarboxylase in Atlantic salmon (Salmo salar L.)

  • Christel Krossøy
  • Erik-Jan Lock
  • Robin Ørnsrud


Due to problems with bone deformities in farmed Atlantic salmon, there is a growing interest in the possible involvement of vitamin K in normal bone development, and sensitive biomarkers for evaluating vitamin K status are therefore needed. The vitamin K-dependent (VKD) enzyme γ-glutamylcarboxylase (GGCX, EC 6.4.x.x) requires vitamin K as a cofactor for its post-translational modification of glutamic acid (Glu) residues to γ-carboxyglutamic acid (Gla) residues in VKD proteins, and is required for their function in haemostasis and bone metabolism. The present study was designed to evaluate the enzyme assay for GGCX activity in isolated liver microsomes and its distribution in the tissues of Atlantic salmon. The effect of KH2 and menadione on the GGCX activity in salmon liver was also compared. Results from the present study show a widespread tissue distribution and expression of GGCX in Atlantic salmon. The GGCX activity and ggcx expression in all bony tissues examined imply the presence of vitamin K, and suggest the involvement of vitamin K in bone metabolism of Atlantic salmon. We propose the GGCX assay as a sensitive marker for vitamin K status, and confirm that menadione does not work as a cofactor for GGCX in Atlantic salmon liver.


Vitamin K Enzyme assay Atlantic salmon Tissue distribution Cofactor γ-Glutamylcarboxylase 



This project is part of a research program called Roles of Fat Soluble Vitamins in Bone Development and Mineral Metabolism, funded by The Research Council of Norway (project # 153472). The authors would like to thank Dr. Rune Waagbø for constructive comments to the manuscript.


  1. Bandyopadhyay PK (2008) Vitamin K-dependent γ-glutamylcarboxylation: an ancient posttranslational modification. Vitam Horm 78:157–184. doi: 10.1016/S0083-6729(07)00008-8 CrossRefGoogle Scholar
  2. Bandyopadhyay PK, Garrett JE, Shetty RP, Keate T, Walker CS, Olivera BM (2002) Gamma-glutamyl carboxylation: an extracellular posttranslational modification that antedates the divergence of molluscs, arthropods, and chordates. Proc Natl Acad Sci USA 99:1264–1269. doi: 10.1073/pnas.022637099 CrossRefGoogle Scholar
  3. Begley GS, Furie BC, Czerwiec E et al (2000) A conserved motif within the vitamin K-dependent carboxylase gene is widely distributed across animal phyla. J Biol Chem 275:36245–36249. doi: 10.1074/jbc.M003944200 CrossRefGoogle Scholar
  4. Berkner K (2000) The vitamin K-dependent carboxylase. J Nutr 130:1877–1880CrossRefGoogle Scholar
  5. Berkner KL (2008) Vitamin K-dependent carboxylation. Vitam Horm 78:131–156. doi: 10.1016/S0083-6729(07)00007-6 CrossRefGoogle Scholar
  6. Berkner KL, Pudota BN (1998) Vitamin K-dependent carboxylation of the carboxylase. Proc Natl Acad Sci USA 95:466–471. doi: 10.1073/pnas.95.2.466 CrossRefGoogle Scholar
  7. Boskey A, Gadaleta S, Gundberg C et al (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196. doi: 10.1016/S8756-3282(98)00092-1 CrossRefGoogle Scholar
  8. Buitenhuis HC, Soute BA, Vermeer C (1990) Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase. Biochim Biophys Acta 1034:170–175CrossRefGoogle Scholar
  9. Czerwiec E, Begley G, Bronstein M et al (2002) Expression and characterization of recombinant vitamin K-dependent γ-glutamyl carboxylase from invertebrate, Conus textile. Eur J Biochem 269:6162–6172. doi: 10.1046/j.1432-1033.2002.03335.x CrossRefGoogle Scholar
  10. Dimuzio MT, Bhown M, Butler WT (1983) The biosynthesis of dentine γ-carboxyglutamic acid-containing protein by rat incisor odontoblasts in organ culture. Biochem J 216:249–257CrossRefGoogle Scholar
  11. Farzaneh-Far A, Proudfoot D, Shanahan C, Weissberg PL (2001) Vascular and valvar calcification: recent advances. Heart 85:13–17. doi: 10.1136/heart.85.1.13 CrossRefGoogle Scholar
  12. Ferland G (1998) The vitamin K-dependent proteins: an update. Nutr Rev 56:223–230CrossRefGoogle Scholar
  13. Furie B, Furie BC (1990) Molecular basis of vitamin K-dependent γ-carboxylation. Blood 75:1753–1762PubMedGoogle Scholar
  14. Graff IE, Waagbø R, Fivelstad S, Vermeer C, Lie Ø, Lundebye AK (2002) A multivariate study on the effects of dietary vitamin K, vitamin D3 and calcium, and dissolved carbon dioxide on growth, bone minerals, vitamin status and health performance in smelting Atlantic salmon Salmo salar L. J Fish Dis 25:599–614. doi: 10.1046/j.1365-2761.2002.00403.x CrossRefGoogle Scholar
  15. Graff IE, Krossøy C, Gjerdevik K, Julshamn K (2009) Influence of dietary menadione nicotinamide bisulphite (vitamin K3) and phylloquinone (vitamin K1) on Atlantic salmon (Salmo salar L.) tissue levels, determined by high-performance liquid chromatography with fluorescence detection. Aquacult Nutr (accepted)Google Scholar
  16. Hanumanthaiah R, Thankavel B, Day K, Gregory M, Jagadeeswaran P (2001) Developmental expression of vitamin K-dependent gamma-carboxylase activity in zebrafish embryos: effect of warfarin. Blood Cells Mol Dis 27:992–999. doi: 10.1006/bcmd.2001.0472 CrossRefGoogle Scholar
  17. Horie-Inoue K, Inoue S (2008) Steroid and xenobiotic receptor mediates a novel vitamin K2 signalling pathway in osteoblastic cells. J Bone Miner Metab 26:9–12CrossRefGoogle Scholar
  18. Hubbard BR, Ulrich MMW, Jacobs M et al (1989) Vitamin K-dependent carboxylase: affinity purification from bovine liver by using a synthetic propeptide containing the γ-carboxylation recognition site. Proc Natl Acad Sci USA 86:6893–6897. doi: 10.1073/pnas.86.18.6893 CrossRefGoogle Scholar
  19. Jiang Y, Doolittle RF (2003) The evolution of vertebrate blood coagulation as viewed from comparison of puffer fish and sea squirt genomes. Proc Natl Acad Sci USA 100:7527–7532. doi: 10.1073/pnas.0932632100 CrossRefGoogle Scholar
  20. Krossøy C, Waagbø R, Fjelldal PG et al (2008) Dietary menadione nicotinamide bisulphite (vitamin K3) does not affect growth or bone health in first-feeding fry of Atlantic salmon (Salmo salar L.). Aquacult Nutr (in press). doi: 10.1111/j.1365-2095.2008.00633.x CrossRefGoogle Scholar
  21. Krossøy C, Ørnsrud R, Wargelius A (2009) Differential gene expression of bgp and mgp in trabecular and compact bone of Atlantic salmon (Salmo salar L.) vertebrae. J Anat (submitted)Google Scholar
  22. Kulman JD, Harris JE, Nakazawa N, Ogasawara M, Satake M, Davie EW (2006) Vitamin K-dependent proteins in Ciona intestinalis, a basal chordate lacking a blood coagulation cascade. Proc Natl Acad Sci USA 103:15794–15799. doi: 10.1073/pnas.0607543103 CrossRefGoogle Scholar
  23. Lambert WE, De Leenher AP (1992) Vitamin K. In: De Leenher AP, Lambert WE, Nelis WE (eds) Modern chromatographic analysis of vitamins, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  24. Larson AE, Friedman PA, Suttie JW (1981) Vitamin K-dependent carboxylase. J Biol Chem 256:11032–11035PubMedGoogle Scholar
  25. Li T, Yang C, Stafford D (2000) Identification of Drosophila vitamin K-dependent gamma-glutamyl carboxylase. J Biol Chem 275:18291–18296. doi: 10.1074/jbc.M001790200 CrossRefGoogle Scholar
  26. Luo G, Ducy P, Mckee MD et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix Gla protein. Nature 386:78–81. doi: 10.1038/386078a0 CrossRefGoogle Scholar
  27. Manfioletti G, Brancolini C, Avanzi G, Schneider C (1993) The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative co-regulator in the blood coagulation cascade. Mol Cell Biol 13:4976–4985CrossRefGoogle Scholar
  28. Marchetti M, Tassinari M, Bauce G (1995) Tolerance of high dietary levels of menadione bisulphite-nicotinamide by rainbow trout, Oncorhynchus mykiss. Aquaculture 134:137–142. doi: 10.1016/0044-8486(95)00044-3 CrossRefGoogle Scholar
  29. Marchetti M, Tassinari M, Bauce G (1999) Stability of crystalline and coated vitamins during manufacture and storage of fish feeds. Aquacult Nutr 5:115–120. doi: 10.1046/j.1365-2095.1999.00094.x CrossRefGoogle Scholar
  30. Morris D, Soute B, Vermeer C, Stafford D (1993) Characterization of the purified vitamin K-dependent gamma-glutamyl carboxylase. J Biol Chem 268:8735–8742PubMedGoogle Scholar
  31. Nelsestuen G, Zytkovicz T, Howard J (1974) Mode of action of vitamin-K—identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem 249:6347–6350PubMedGoogle Scholar
  32. Okano T, Nakagawa K (2005) Vitamin K-dependent gamma-glutamyl carboxylase activity of vitamin K compounds in liver and bone. J Bone Miner Res 20:S137Google Scholar
  33. Oldenburg J, Marinova M, Müller-Reible C, Watzka M (2008) The vitamin K cycle. Vitam Horm 78:35–62. doi: 10.1016/S0083-6729(07)00003-9 CrossRefGoogle Scholar
  34. Olsvik P, Lie K, Jordal AEO, Nilsen T, Hordvik I (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 6:21. doi: 10.1186/1471-2199-6-21 CrossRefGoogle Scholar
  35. Oxley A, Torstensen BE, Rustan AC, Olsen RE (2005) Enzyme activities of intestinal triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B 141:77–87. doi: 10.1016/j.cbpc.2005.01.012 CrossRefGoogle Scholar
  36. Potischman N, Freudenheim JL (2003) Biomarkers of nutritional exposure and nutritional status: an overview. J Nutr 133:873S–874SCrossRefGoogle Scholar
  37. Price PA (1988) Role of vitamin K-dependent proteins in bone metabolism. Annu Rev Nutr 8:565–583. doi: 10.1146/ CrossRefGoogle Scholar
  38. Proudfoot D, Shanahan C (2006) Molecular mechanisms mediating vascular calcification: role of matrix Gla protein. Nephrology 11:455–461. doi: 10.1111/j.1440-1797.2006.00660.x CrossRefGoogle Scholar
  39. Romero EE, Velazquez-Estades LJ, Deo R, Schapiro B, Roth DA (1998a) Cloning of rat vitamin K-dependent γ-glutamylcarboxylase and developmentally regulated gene expression in postimplantation embryos. Exp Cell Res 243:334–346. doi: 10.1006/excr.1998.4151 CrossRefGoogle Scholar
  40. Romero EE, Deo R, Velazquez-Estades LJ, Roth DA (1998b) Cloning, structural organization, and stranscriptional activity of the rat vitamin K-dependent gamma-glutamyl carboxylase. Biochem Biophys Res Commun 248:783–788. doi: 10.1006/bbrc.1998.8987 CrossRefGoogle Scholar
  41. Sadowski JA, Esmon CT, Suttie JW (1976) Vitamin K-dependent carboxylase. J Biol Chem 251(9):2770–2776PubMedGoogle Scholar
  42. Shah DV, Suttie JW (1978) Vitamin K-dependent carboxylase: increased activity in a hypoprothrombinemia state. Arch Biochem Biophys 191(2):571–577. doi: 10.1016/0003-9861(78)90395-8 CrossRefGoogle Scholar
  43. Shah DV, Suttie JW (1979) Vitamin K-dependent carboxylase: liver activity in various species. Proc Exp Biol Med 161:498–501CrossRefGoogle Scholar
  44. Stenflo J, Fernlund P, Egan W, Roepstor P (1974) Vitamin-K dependent modifications of glutamic-acid residues in prothrombin. Proc Natl Acad Sci USA 71:2730–2733. doi: 10.1073/pnas.71.7.2730 CrossRefGoogle Scholar
  45. Tabb M, Sun A, Zhou C et al (2003) Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 278:43919–43927. doi: 10.1074/jbc.M303136200 CrossRefGoogle Scholar
  46. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi: 10.1093/molbev/msm092 CrossRefGoogle Scholar
  47. Udagawa M (2000) Physiological role of vitamin K in fish—review. Jpn Agric Res Q 34(4):279–284Google Scholar
  48. Wallin R, Hutson S (2004) Warfarin and the vitamin K-dependent γ-carboxylation system. Trends Mol Med 10:299–302. doi: 10.1016/j.molmed.2004.05.003 CrossRefGoogle Scholar
  49. Wu SM, Cheung WF, Frazier D, Stafford DW (1991a) Cloning and expression of the cDNA for human g-glutamylcarboxylase. Science 254:1634–1636. doi: 10.1126/science.1749935 CrossRefGoogle Scholar
  50. Wu SM, Morris DP, Stafford DW (1991b) Identification and purification to near homogenity of the vitamin K-dependent carboxylase. Proc Natl Acad Sci USA 88:2236–2240. doi: 10.1073/pnas.88.6.2236 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christel Krossøy
    • 1
    • 2
  • Erik-Jan Lock
    • 1
  • Robin Ørnsrud
    • 1
  1. 1.National Institute of Nutrition and Seafood Research (NIFES)BergenNorway
  2. 2.Department of BiologyUniversity of BergenBergenNorway

Personalised recommendations