Skip to main content
Log in

Biochemical and histological changes in the brain tissue of spotted murrel, Channa punctatus (Bloch), exposed to endosulfan

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The present experiment was conducted to establish the relationship between selected physiological parameters and histological responses of Channa punctatus brain tissue to endosulfan exposure. The fish (35.6 ± 0.7 g) was exposed to sublethal endosulfan concentration (8.1 μg l−1) for a period of 12, 24, 36, 48, 72, and 96 h. Results showed that brain glucose level increased significantly after exposure, indicating a hyperglycemic state of the fish. Brain vitamin C level decreased with an increase in the exposure time. Acetylcholine esterase and adenosine triphosphatase enzyme activities also showed a significant reduction upon endosulfan exposure. Brain histopathology after 96 h endosulfan exposure showed that the apical lobe of the cerebrum (the only portion examined) had mild necrosis. Focal area of gliosis could be seen in the cerebrum, which were absent in the control fish. The results indicate that exposure of sublethal concentration of endosulfan to C. punctatus may have a direct effect on the histology of the fish's brain tissue, thereby affecting its metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Augustinsson KB (1957) The reaction of acetylcholine esters and other carboxylic acid derivatives with hydroxylamine and its analytical application. J Biol Chem 180:249–261

    Google Scholar 

  • Azad IS, Dayal JS, Poornima M, Ali SA (2007) Supra dietary levels of vitamins C and E enhance antibody production and immune memory in juvenile milkfish (Chanos chanos) to formalin-killed Vibrio vulnificus. Fish Shellfish Immunol 23:54–163. doi:10.1016/j.fsi.2006.09.014

    Article  Google Scholar 

  • Cengiz EI, Unlu E (2002) Histological changes in the gill of mosquito fish, Gambusia affinis exposed to endosulfan. Bull Environ Contam Toxicol 68:290–296

    CAS  PubMed  Google Scholar 

  • Chondor SL (1999) Biology of finfish and shellfish. SCSC Publishers, India

    Google Scholar 

  • Coppage DO, Mathew E (1974) Short-term effects of organophosphate pesticides on cholinesterases of estuarine fishes and pink shrimp. Bull Environ Contam Toxicol 11:483–488. doi:10.1007/BF01685308

    Article  CAS  PubMed  Google Scholar 

  • Das BK (1997) Studies on the effect of some pesticides and common used chemicals on Indian major carp and their ecosystem. PhD Thesis, Orissa University of Agriculture and Technology, Bhubaneswar, Orissa, India

  • Das BK, Mukherjee SC (2000) A histological study of carp (Labeo rohita) exposed to hexachlorocyclohexane. Vet Arh 70:169–180

    Google Scholar 

  • Devraj P, Selvarajan VR, Durairaj S (1991) Relationship between acetyl cholinesterase and monoamine oxidase in brain regions of O. mossambicus exposed to phosalone. Indian J Exp Biol 29:790–792

    Google Scholar 

  • Dutta HM, Arends DA (2003) Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish. Environ Res 91:157–162. doi:10.1016/S0013-9351(02)00062-2

    Article  CAS  PubMed  Google Scholar 

  • Dutta HM, Munshi JSD, Dutta GR, Singh NK, Adhikari S, Richmonds CR (1995) Age-related differences in the inhibition of brain acetylcholinesterase activity of Heteropneustes fossilis (Bloch) by malathion. Comp Biochem Physiol A 11:331–334. doi:10.1016/0300-9629(94)00166-Q

    Article  Google Scholar 

  • EFSA (2005) Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to endosulfan as undesirable substance in animal feed. EFS A J 234:1–29

    Google Scholar 

  • Ferrando MD, Andreu E (1991) Change in selected biochemical parameters in the brain of fish, Anguilla anguilla (L.), exposed to lindane. Bull Environ Contam Toxicol 47:459–464. doi:10.1007/BF01702211

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Garg UK, Pal AK, Jha GJ, Jadhao SB (2004) Haemato-biochemical and pathophysiological effects of chronic toxicity with synthetic pyrethroid, organophosphate and chlorinated pesticides in broiler chicks. Int Immunopharmacol 4:1709–1722. doi:10.1016/j.intimp.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  • Heath AG (1995) Water pollution and fish physiology, 2nd edn. Lewis publishers, London, UK

    Google Scholar 

  • Hota AK, Mishra DK, Tripathy PC (1993) Metabolic effects of kilex carbaryl on a freshwater teleost, Channa punctatus (Bloch). In: Agrawal VP, Abidi SAH, Verma GP (eds) Environmental impact on aquatic and terrestrial habitats. Berhampur Society of Biosciences, Muzaffarnagar, pp 335–342

    Google Scholar 

  • Lorenzatti E, Altahus R, Lajmanovich R, Peltzer P (2004) Residues of endosulfan in soy plants in Argentina croplands. Fresenius Environ Bull 13:89–92

    CAS  Google Scholar 

  • Lowry OH, Ronebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–276

    CAS  PubMed  Google Scholar 

  • Mauck WL, Mehrle PM, Mayer FL (1978) Effect of polychlorinated biphenyl Arochor 1254 on growth, survival and bone development in brook trout, Salvelinus fontinalis. J Fish Res Board Can 35:1084–1088

    Article  CAS  Google Scholar 

  • Montero D, Izquierdo MS, Tort L, Robaina L, Vergara JM (1999) High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead sea bream, Sparus aurata, juveniles. Fish Physiol Biochem 20:53–60. doi:10.1023/A:1007719928905

    Article  CAS  Google Scholar 

  • Naqvi SM, Vaishnavi C (1993) Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals. Comp Biochem Physiol C 105:347–361. doi:10.1016/0742-8413(93)90071-R

    Article  CAS  PubMed  Google Scholar 

  • Oruc EO, Uner N, Tamer L (2002) Comparison of NA+, K+-ATPase activity and malondialdehyde contents in liver tissue for three fish species exposed to azinphosmethyl. Bull Environ Contam Toxicol 69:271–277. doi:10.1007/s00128-002-0057-y

    Article  Google Scholar 

  • Pal AK, Kushwah H, Kushwah A (1989) Protective role of protein against endosulfan exposure. J Vet Physiol Allied Sci 8:19–23

    Google Scholar 

  • Perez Campo R, Lopez–Torres M, Rojas C, Cadenas S, Barja G (1993) A comparative study of free radicals in vertebrates–1, antioxidant enzyme. Comp Biochem Physiol B 105:749–755. doi:10.1016/0305-0491(93)90116-M

    Article  CAS  PubMed  Google Scholar 

  • Petri D, Glover CN, Ylving S, Kolås K, Fremmersvik G, Waagbø R, Berntssen MHG (2006) Sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan as assessed by haematology, blood biochemistry, and growth parameters. Aquat Toxicol 80:207–216. doi:10.1016/j.aquatox.2006.07.019

    Article  CAS  PubMed  Google Scholar 

  • Post RL, Sen AK (1967) Methods in enzymology, vol 10. Academic Press, Inc., New York, p 762

    Google Scholar 

  • Puspanjali Pal AK, Prasad RL, Prasad A, Singh SK, Kumar A, Jadhao SB (2005) In ovo embryotoxicity of α-endosulfan adversely influences liver and brain metabolism and immune system in chickens. Pestic Biochem Physiol 82:103–114

    Article  Google Scholar 

  • Roberts RJ (1989) Nutritional pathology of teleosts. In: Roberts RJ (ed) Fish pathology. Bailliere Tindall, London, pp 337–362

    Google Scholar 

  • Roe JH, Keuther CA (1943) The determinations of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenylhydrazine (DNPH) derivative of dehydroascorbic acid. J Biol Chem 147:399–407

    CAS  Google Scholar 

  • Sarma K, Pal AK, Mukherjee SC, Datta S (2003) Acute toxicity of endosulfan of freshwater teleost, Channa punctatus (Bloch). J Environ Res 13:80–84

    Google Scholar 

  • Sharma RM (1988) Effect of endosulfan on adenosine triphosphatase (ATPase) activity in liver, kidney and muscles of Channa gachua. Bull Environ Contam Toxicol 41:317–323. doi:10.1007/BF01688873

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Singh NN (1981) Effects of endosulfan on fish carbohydrate metabolism. Ecotoxicol Environ Saf 15:257–261

    Google Scholar 

  • Trevors JI (1986) A basic programme for estimating LD50 values using IBM- PC. Bull Environ Contam Toxicol 37:18–26. doi:10.1007/BF01607723

    Article  CAS  PubMed  Google Scholar 

  • Vijayan MM, Foster GD, Moon TW (1993) Cortisol implantation alters hepatic metabolism and hormonal responsiveness in the sea raven. Fish Physiol Biochem 12:327–335. doi:10.1007/BF00004417

    Article  CAS  PubMed  Google Scholar 

  • Winston G, Di Giulio R (1991) Pro-oxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–161. doi:10.1016/0166-445X(91)90033-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the director of the Central Institute of Fisheries Education, Versova, Mumbai, India, for providing the facilities used during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Baruah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarma, K., Pal, A.K., Sahu, N.P. et al. Biochemical and histological changes in the brain tissue of spotted murrel, Channa punctatus (Bloch), exposed to endosulfan. Fish Physiol Biochem 36, 597–603 (2010). https://doi.org/10.1007/s10695-009-9333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-009-9333-7

Keywords

Navigation