Advertisement

Fish Physiology and Biochemistry

, Volume 36, Issue 3, pp 573–586 | Cite as

Physicochemical and kinetic characteristics of rhodanese from the liver of African catfish Clarias gariepinus Burchell in Asejire lake

  • Omolara Titilayo Akinsiku
  • Femi Kayode Agboola
  • Adenike Kuku
  • Adeyinka Afolayan
Article

Abstract

Two forms of rhodanese were purified from the liver of Clarias gariepinus Burchell, designated catfish rhodanese I (cRHD I) and rhodanese II (cRHD II), by ion-exchange chromatography on a CM-Sepharose CL-6B column and gel filtration through a Sephadex G-75 column. The apparent molecular weight obtained for cRHD I and cRHD II was 34,500 ± 707 and 36,800 ± 283 Da, respectively. The subunit molecular weight determined by sodium dodecyl sulphate–polyacrylamide gel electrophoresis was 33,200 ± 283 and 35,100 ± 141 Da for cRHD I and cRHD II, respectively. Atomic absorption spectrophotometric analysis revealed that cRHD II contained a high level of iron (Fe), which presumably was responsible for the brownish colour of the preparation. In contrast, no Fe was identified in cRHD I, and its preparation was colourless. Further characterization of cRHD II gave true Michaelis–Menten constant (Km) values of 25.40 ± 1.70 and 18.60 ± 1.68 mM for KCN and Na2S2O3, respectively, an optimum pH of 6.5 and an optimum temperature of 40°C. The Arrhenius plot of the effects of temperature on the reaction rate consisted of two linear segments with a break occurring at 40°C. The apparent activation energy values from these slopes were 7.3 and 72.9 kcal/mol. Inhibition studies on the cRHD II enzyme showed that the activity of the enzyme was not affected by Mn2+, Co2+, Sn2+, Ni2+ and NH4+, but Zn2+ inhibited the enzyme considerably.

Keywords

Aquatic organisms Asejire Lake Catfish (Clarias gariepinusCyanide Cyanide detoxification Cyanogenic plants Fish Rhodanese 

References

  1. Agboola FK, Okonji RE (2004) Presence of rhodanese in the cytosolic fraction of the fruit bat (Eidolon helvum) liver. J Biochem Mol Biol 37(3):275–281PubMedGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry (ATSDR) (1989) Toxicological profile for cyanide. ATSDR/TP-88/12; PB90-162058. Prepared by Syracuse Research Corporation for ATSDR, US Public Health Service, under Contract No. 68-C8- 2004. ATSDR, AtlantaGoogle Scholar
  3. Aird BA, Heinrikson RL, Westley J (1987) Isolation and characterization of a prokaryotic sulphurtransferase. J Biol Chem 262:17327–17335PubMedGoogle Scholar
  4. Ali A, Al-Qarawi HM, Mousa BH (2001) Tissue and intracellular distribution of rhodanese and mercaptopyruvate sulphurtranferase in ruminants and birds. Vet Res 32:63–70. doi: 10.1051/vetres:2001110 CrossRefGoogle Scholar
  5. Aminlari M, Malekhusseini A, Akrami F, Ebrahimnejad H (2007) Cyanide-metabolizing enzyme rhodanese in human tissues: comparison with domestic animals. Comp Clin Pathol 16(1):47–51. doi: 10.1007/s00580-006-0647-x CrossRefGoogle Scholar
  6. Anosike EO, Ugochukwu EN (1981) Characterization of rhodanese from cassava leaves and tubers. J Exp Bot 32:1021–1027. doi: 10.1093/jxb/32.5.1021 CrossRefGoogle Scholar
  7. Blumenthal KM, Heinrikson RL (1971) Structural studies of bovine liver rhodanese: I. Isolation and characterization of two active forms of the enzymes. J Biol Chem 246:2430–2437PubMedGoogle Scholar
  8. Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. Sequence–structure–function relations. EMBO Rep 3:741–746CrossRefGoogle Scholar
  9. Bruton MN (1979) The food and feeding behaviour of Clarias gariepinus (Pisces: Clariidae) in Lake Sibaya, South Africa, with emphasis on its role as a predator of cichlids. Trans Zool Soc Lond 35(1):47–114CrossRefGoogle Scholar
  10. Chew MY, Boey CG (1972) Rhodanese of tapioca leaf. Phytochemistry 11:167–169. doi: 10.1016/S0031-9422(00)89983-5 CrossRefGoogle Scholar
  11. Clay D (1979) Sexual maturity and fecundity of the African catfish (Clarias gariepinus) with an observation on the spawning behaviour of the Nile catfish (Clarias lazera). Zool J Linn Soc 65:351–365. doi: 10.1111/j.1096-3642.1979.tb01100.x CrossRefGoogle Scholar
  12. Cleland WW (1970) Steady state kinetics. In: Boyer PB (ed) The enzymes, vol II, 3rd edn. Academic Press, London, pp 1–65Google Scholar
  13. Cosby EQ, Summer JB (1945) Rhodanese. Arch Biochem 7:457–460Google Scholar
  14. Eisler R (1991) Cyanide hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish Wildl Serv Biol Rep 85(1.23):1–55Google Scholar
  15. Environmental Protection Agency (EPA) (1980) Ambient water quality criteria for cyanides. U.S. EPA Rep 440/5-80-037. EPA, Washington D.C.Google Scholar
  16. Ezzi MI, Pascual JA, Gould BJ, Lynch JM (2003) Characterisation of the rhodanese enzyme in Trichoderma spp. Enzyme Microb Technol 32(5):629–634. doi: 10.1016/S0141-0229(03)00021-8 CrossRefGoogle Scholar
  17. Florini JR, Vestling CS (1957) Graphical determination of the dissociation constants for two substrate enzyme systems. Biochim Biophys Acta 25:575–578. doi: 10.1016/0006-3002(57)90529-2 CrossRefGoogle Scholar
  18. Fruton JS, Simmonds S (eds) (1963) Kinetics of enzyme. In: Fruton JS, Simmonds S (eds) General biochemistry, 2nd edn, Wiley, New York, pp 244–283Google Scholar
  19. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum protein by Biuret reaction. J Biol Chem 117:751–766Google Scholar
  20. Himwich WA, Saunders JB (1948) Enzymic conversion of cyanide to thiocyanate. Am J Physiol 53:348–354Google Scholar
  21. Holden AV, Marsden K (1964) Cyanide in salmon and brown trout. Department of Agriculture and Fisheries of Scotland. Freshw Salmon Fish Res Ser 33. Department of Agriculture and Fisheries of Scotland, EdinburghGoogle Scholar
  22. Horowitz PM, DeToma F (1970) Improved preparation of bovine liver rhodanese. J Biol Chem 245(6):984–985PubMedGoogle Scholar
  23. Jarabak R, Westley J (1974) Human liver rhodanese: nonlinear kinetic behaviour. Double displacement mechanism. Biochemistry 13(16):3233–3236. doi: 10.1021/bi00713a006 CrossRefGoogle Scholar
  24. Kaur M, Singh K, Rup PJ, Kamboj SS, Saxena AK, Sharma M, Bhagat M, Sood SK, Singh J (2006) A tuber lectin from Arisaema jacquemontii Blume with anti-insect and anti-proliferative properties. J Biochem Mol Biol 39(4):432–440PubMedGoogle Scholar
  25. Keilin D (1929) Cytochrome and respiratory enzymes. Proc R Soc Lond (Biol Sci) 104:206–251. doi: 10.1098/rspb.1929.0009 CrossRefGoogle Scholar
  26. Koj A (1968) Enzymic reduction of thiosulphate in preparations from beef liver. Acta Biochim Pol 15(2):161–169PubMedGoogle Scholar
  27. Koj A, Frendo J, Wojtczak L (1975) Subcellular distribution and intramitochondrial localization of the three sulphurtransferases in rat liver. FEBS Lett 57:42–46CrossRefGoogle Scholar
  28. Kuo SM, Lea TC, Stiqanuk MH (1983) Developmental pattern, tissue distribution and subcellular distribution of cysteine: α-ketoglutarateaminotransferase and 3-mercaptopyruvate sulphurtransferases activities in the rat. Biol Neonate 43:23–32CrossRefGoogle Scholar
  29. Lameed GA, Obadara PG (2006) Eco-development impact of coca-cola industry on biodiversity resources at Asejire area, Ibadan; Nigeria. J Fish Int 1(4):55–62Google Scholar
  30. Leduc G (1978) Deleterious effects of cyanide on early life stages of Atlantic salmon (Salmo salar). J Fish Res Board Can 35:166–174CrossRefGoogle Scholar
  31. Leduc G, Pierce RC, McCracken IR (1982) The effects of cyanides on aquatic organisms with emphasis upon freshwater fishes. National Research Council of Canada (NRCC) Publ 19246. NRCC/CNRC, OttawaGoogle Scholar
  32. Lee CH, Hwang JH, Lee YS, Cho KS (1995) Purification and characterization of mouse liver rhodanese. J Biochem Mol Biol 28:170–176Google Scholar
  33. Lieske CN, Clark CR, Zoeffel LD (1996) Temperature effects in cyanolysis using elemental sulphur. J Appl Toxicol 16:171–175. doi: 10.1002/(SICI)1099-1263(199603)16:2<171::AID-JAT327>3.0.CO;2-R CrossRefGoogle Scholar
  34. Micha JC (1973) Etude des populations piscicoles de l'Ubangui et tentative de selection et d'adaptation de quelques especes a l'etang de pisciculture. Centre Technique Forestier Tropical, Nogent-sur-MarneGoogle Scholar
  35. Montgomery RD (1965) The medical significance of cyanogens in plant foodstuffs. Am J Clin Nutr 17:103–113CrossRefGoogle Scholar
  36. Nagahara N, Nishino T (1996) Role of amino acid residues in the active site of rat liver mercaptopyruvate sulphurtransferases. J Biol Chem 271:27395–27401. doi: 10.1074/jbc.271.44.27395 CrossRefGoogle Scholar
  37. Nagahara N, Okazaki T, Nishino T (1995) Cytosolic mercaptopyruvate sulphurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site, amino acid sequence and the increase in mercaptopyruvate sulphurtransferase activity of rhodanese by site directed mutagenesis. J Biol Chem 270:16230–16235. doi: 10.1074/jbc.270.27.16230 CrossRefGoogle Scholar
  38. Nagahara N, Ito T, Minam M (1999) Mercaptopyruvate sulphurtransferase as a defence against cyanide toxications; molecular properties and mode of detoxification. Histol Histopathol 14:1277–1286PubMedGoogle Scholar
  39. Ogata K, Xing D, Volini M (1989) Bovine mitochondrial rhodanese is a phosphoprotein. J Biol Chem 246(5):2718–2725Google Scholar
  40. Ploegman JH, Drent G, Kalk KH, Hol WG (1978) Structure of bovine liver rhodanese. I. Structure determination at 2.5 Å resolution and a comparison of the conformation and sequence of its two domains. J Mol Biol 123:557–594. doi: 10.1016/0022-2836(78)90207-3 CrossRefGoogle Scholar
  41. Russell J, Weng L, Kein PS, Heinrikson RL (1978) The covalent structure of bovine liver rhodanese. J Biol Chem 253:8102–8108PubMedGoogle Scholar
  42. Schlesinger P, Westley J (1974) An expanded mechanism for rhodanese catalysis. J Biol Chem 249:780–788PubMedGoogle Scholar
  43. Segel IH (ed) (1975) Enzymes. In: Segel IH (ed) Biochemical calculations; 2nd edn. Wiley, New York, pp 278–281Google Scholar
  44. Smith LL, Broderius SJ, Oseid DM, Kimball GL, Koenst WM (1978) Acute toxicity of hydrogen cyanide to freshwater fishes. Arch Environ Contam Toxicol 7:325–337CrossRefGoogle Scholar
  45. Smith LL, Broderius SJ Jr, Oseid DM, Kimball GL, Koenst WM, Lind DT (1979) Acute and chronic toxicity of HCN to fish and invertebrates. U.S. Environ. Prot. Agency Rep. 600/3-79-009, 129 ppGoogle Scholar
  46. Smith J, Urbanska KM (1986) Rhodanese activity in Lotus corniculatus sensu-lato. J Nat Hist 20(6):1467–1476. doi: 10.1080/00222938600770991 CrossRefGoogle Scholar
  47. Sorbo BH (1951) On the properties of rhodanese. Acta Chem Scand 5:724–726. doi: 10.3891/acta.chem.scand.05-0724 CrossRefGoogle Scholar
  48. Sorbo BH (1953a) Crystalline rhodanese. Enzyme catalyzed reaction. Acta Chem Scand 7:1137–1145. doi: 10.3891/acta.chem.scand.07-1137 CrossRefGoogle Scholar
  49. Sorbo BH (1953b) Crystalline rhodanese. Acta Chem Scand 7:1129–1136. doi: 10.3891/acta.chem.scand.07-1129 CrossRefGoogle Scholar
  50. Sorbo BH (1955) Rhodanese. In: Sidney PL, Kaplan NO (eds) Methods of enzymology, vol 2. Academic Press, New York, pp 334–337Google Scholar
  51. Sorbo BH (1957) Enzyme transfer of sulphur from mercaptopyruvate to sulphate or sulphonates. Biochim Biophys Acta 24:324–329. doi: 10.1016/0006-3002(57)90201-9 CrossRefGoogle Scholar
  52. Taniguichi T, Kimura T (1974) Role of 3-mercaptopyruvate sulphurtransferase in the formation of the iron chromophore of adrenal ferredoxin. Biochim Biophys Acta 364:284–295CrossRefGoogle Scholar
  53. Tolba MK (1982) Development without destruction. Evolving environmental perceptions. Dublin, Tycooly. Nat Resour Environ Ser 12:197Google Scholar
  54. Towill LE, Drury JS, Whitfield BL, Lewis EB, Galyan EL, Hammons AS (1978) Reviews of the environmental effects of pollutants vs. cyanide. U.S. Environmental Protection Agency (EPA) Rep 600/1-78-027. EPA, Washington D.C. Google Scholar
  55. Ulmer DD, Vallee BL (1972) Role of metals in sulphurtranferases activity. Annu Rev Biochem 32:86–90Google Scholar
  56. Vazquez E, Gazzaniga S, Polo C, Batlle A (1997) Mitochondrial and cytosolic rhodanese from liver of DAB-treated mice. III. Inhibition kinetic studies. Cancer Biochem Biophys 15(4):285–293PubMedGoogle Scholar
  57. Villarejo M, Westley J (1963) Mechanism of rhodanese catalysis of thiosulphate oxidation-relation. J Biol Chem 238:4016–4060PubMedGoogle Scholar
  58. Volini M, DeToma F, Westley J (1967) Dimeric structure and zinc content of bovine liver rhodanese. J Biol Chem 242:5220–5225PubMedGoogle Scholar
  59. Wang SF, Volini M (1968) Studies on the active site of rhodanese. J Biol Chem 243:5465–5470PubMedGoogle Scholar
  60. Warburg O (1911) Inhibition of the action of prussic acid in living cells. Hoppe Seylers Z Physiol Chem 76:331–346CrossRefGoogle Scholar
  61. Westley J (ed) (1980) Rhodanese and the sulphane pool. In: Jakoby WB (ed) Enzymatic basis of detoxification, vol 2. Academic Press, New York, pp 245–259Google Scholar
  62. Whitaker JR (1972) Effect of temperature on enzyme catalysed reaction. In: Whitaker JR (ed) Principles of enzymology for the food science. Marcel Dekker, New York, pp 319–348Google Scholar
  63. Wokes F, Willimott SG (1951) The determination of cyanide in seed. J Pharm Pharmacol 3:905–916CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Omolara Titilayo Akinsiku
    • 1
  • Femi Kayode Agboola
    • 1
  • Adenike Kuku
    • 1
  • Adeyinka Afolayan
    • 1
  1. 1.Department of BiochemistryObafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations