Skip to main content
Log in

Physicochemical and kinetic characteristics of rhodanese from the liver of African catfish Clarias gariepinus Burchell in Asejire lake

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Two forms of rhodanese were purified from the liver of Clarias gariepinus Burchell, designated catfish rhodanese I (cRHD I) and rhodanese II (cRHD II), by ion-exchange chromatography on a CM-Sepharose CL-6B column and gel filtration through a Sephadex G-75 column. The apparent molecular weight obtained for cRHD I and cRHD II was 34,500 ± 707 and 36,800 ± 283 Da, respectively. The subunit molecular weight determined by sodium dodecyl sulphate–polyacrylamide gel electrophoresis was 33,200 ± 283 and 35,100 ± 141 Da for cRHD I and cRHD II, respectively. Atomic absorption spectrophotometric analysis revealed that cRHD II contained a high level of iron (Fe), which presumably was responsible for the brownish colour of the preparation. In contrast, no Fe was identified in cRHD I, and its preparation was colourless. Further characterization of cRHD II gave true Michaelis–Menten constant (Km) values of 25.40 ± 1.70 and 18.60 ± 1.68 mM for KCN and Na2S2O3, respectively, an optimum pH of 6.5 and an optimum temperature of 40°C. The Arrhenius plot of the effects of temperature on the reaction rate consisted of two linear segments with a break occurring at 40°C. The apparent activation energy values from these slopes were 7.3 and 72.9 kcal/mol. Inhibition studies on the cRHD II enzyme showed that the activity of the enzyme was not affected by Mn2+, Co2+, Sn2+, Ni2+ and NH4 +, but Zn2+ inhibited the enzyme considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agboola FK, Okonji RE (2004) Presence of rhodanese in the cytosolic fraction of the fruit bat (Eidolon helvum) liver. J Biochem Mol Biol 37(3):275–281

    CAS  PubMed  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1989) Toxicological profile for cyanide. ATSDR/TP-88/12; PB90-162058. Prepared by Syracuse Research Corporation for ATSDR, US Public Health Service, under Contract No. 68-C8- 2004. ATSDR, Atlanta

  • Aird BA, Heinrikson RL, Westley J (1987) Isolation and characterization of a prokaryotic sulphurtransferase. J Biol Chem 262:17327–17335

    CAS  PubMed  Google Scholar 

  • Ali A, Al-Qarawi HM, Mousa BH (2001) Tissue and intracellular distribution of rhodanese and mercaptopyruvate sulphurtranferase in ruminants and birds. Vet Res 32:63–70. doi:10.1051/vetres:2001110

    Article  Google Scholar 

  • Aminlari M, Malekhusseini A, Akrami F, Ebrahimnejad H (2007) Cyanide-metabolizing enzyme rhodanese in human tissues: comparison with domestic animals. Comp Clin Pathol 16(1):47–51. doi:10.1007/s00580-006-0647-x

    Article  CAS  Google Scholar 

  • Anosike EO, Ugochukwu EN (1981) Characterization of rhodanese from cassava leaves and tubers. J Exp Bot 32:1021–1027. doi:10.1093/jxb/32.5.1021

    Article  CAS  Google Scholar 

  • Blumenthal KM, Heinrikson RL (1971) Structural studies of bovine liver rhodanese: I. Isolation and characterization of two active forms of the enzymes. J Biol Chem 246:2430–2437

    CAS  PubMed  Google Scholar 

  • Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. Sequence–structure–function relations. EMBO Rep 3:741–746

    Article  CAS  Google Scholar 

  • Bruton MN (1979) The food and feeding behaviour of Clarias gariepinus (Pisces: Clariidae) in Lake Sibaya, South Africa, with emphasis on its role as a predator of cichlids. Trans Zool Soc Lond 35(1):47–114

    Article  Google Scholar 

  • Chew MY, Boey CG (1972) Rhodanese of tapioca leaf. Phytochemistry 11:167–169. doi:10.1016/S0031-9422(00)89983-5

    Article  CAS  Google Scholar 

  • Clay D (1979) Sexual maturity and fecundity of the African catfish (Clarias gariepinus) with an observation on the spawning behaviour of the Nile catfish (Clarias lazera). Zool J Linn Soc 65:351–365. doi:10.1111/j.1096-3642.1979.tb01100.x

    Article  Google Scholar 

  • Cleland WW (1970) Steady state kinetics. In: Boyer PB (ed) The enzymes, vol II, 3rd edn. Academic Press, London, pp 1–65

    Google Scholar 

  • Cosby EQ, Summer JB (1945) Rhodanese. Arch Biochem 7:457–460

    CAS  Google Scholar 

  • Eisler R (1991) Cyanide hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish Wildl Serv Biol Rep 85(1.23):1–55

    Google Scholar 

  • Environmental Protection Agency (EPA) (1980) Ambient water quality criteria for cyanides. U.S. EPA Rep 440/5-80-037. EPA, Washington D.C.

  • Ezzi MI, Pascual JA, Gould BJ, Lynch JM (2003) Characterisation of the rhodanese enzyme in Trichoderma spp. Enzyme Microb Technol 32(5):629–634. doi:10.1016/S0141-0229(03)00021-8

    Article  CAS  Google Scholar 

  • Florini JR, Vestling CS (1957) Graphical determination of the dissociation constants for two substrate enzyme systems. Biochim Biophys Acta 25:575–578. doi:10.1016/0006-3002(57)90529-2

    Article  CAS  Google Scholar 

  • Fruton JS, Simmonds S (eds) (1963) Kinetics of enzyme. In: Fruton JS, Simmonds S (eds) General biochemistry, 2nd edn, Wiley, New York, pp 244–283

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum protein by Biuret reaction. J Biol Chem 117:751–766

    Google Scholar 

  • Himwich WA, Saunders JB (1948) Enzymic conversion of cyanide to thiocyanate. Am J Physiol 53:348–354

    Google Scholar 

  • Holden AV, Marsden K (1964) Cyanide in salmon and brown trout. Department of Agriculture and Fisheries of Scotland. Freshw Salmon Fish Res Ser 33. Department of Agriculture and Fisheries of Scotland, Edinburgh

  • Horowitz PM, DeToma F (1970) Improved preparation of bovine liver rhodanese. J Biol Chem 245(6):984–985

    CAS  PubMed  Google Scholar 

  • Jarabak R, Westley J (1974) Human liver rhodanese: nonlinear kinetic behaviour. Double displacement mechanism. Biochemistry 13(16):3233–3236. doi:10.1021/bi00713a006

    Article  CAS  Google Scholar 

  • Kaur M, Singh K, Rup PJ, Kamboj SS, Saxena AK, Sharma M, Bhagat M, Sood SK, Singh J (2006) A tuber lectin from Arisaema jacquemontii Blume with anti-insect and anti-proliferative properties. J Biochem Mol Biol 39(4):432–440

    CAS  PubMed  Google Scholar 

  • Keilin D (1929) Cytochrome and respiratory enzymes. Proc R Soc Lond (Biol Sci) 104:206–251. doi:10.1098/rspb.1929.0009

    Article  CAS  Google Scholar 

  • Koj A (1968) Enzymic reduction of thiosulphate in preparations from beef liver. Acta Biochim Pol 15(2):161–169

    CAS  PubMed  Google Scholar 

  • Koj A, Frendo J, Wojtczak L (1975) Subcellular distribution and intramitochondrial localization of the three sulphurtransferases in rat liver. FEBS Lett 57:42–46

    Article  CAS  Google Scholar 

  • Kuo SM, Lea TC, Stiqanuk MH (1983) Developmental pattern, tissue distribution and subcellular distribution of cysteine: α-ketoglutarateaminotransferase and 3-mercaptopyruvate sulphurtransferases activities in the rat. Biol Neonate 43:23–32

    Article  CAS  Google Scholar 

  • Lameed GA, Obadara PG (2006) Eco-development impact of coca-cola industry on biodiversity resources at Asejire area, Ibadan; Nigeria. J Fish Int 1(4):55–62

    Google Scholar 

  • Leduc G (1978) Deleterious effects of cyanide on early life stages of Atlantic salmon (Salmo salar). J Fish Res Board Can 35:166–174

    Article  CAS  Google Scholar 

  • Leduc G, Pierce RC, McCracken IR (1982) The effects of cyanides on aquatic organisms with emphasis upon freshwater fishes. National Research Council of Canada (NRCC) Publ 19246. NRCC/CNRC, Ottawa

  • Lee CH, Hwang JH, Lee YS, Cho KS (1995) Purification and characterization of mouse liver rhodanese. J Biochem Mol Biol 28:170–176

    CAS  Google Scholar 

  • Lieske CN, Clark CR, Zoeffel LD (1996) Temperature effects in cyanolysis using elemental sulphur. J Appl Toxicol 16:171–175. doi:10.1002/(SICI)1099-1263(199603)16:2<171::AID-JAT327>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Micha JC (1973) Etude des populations piscicoles de l'Ubangui et tentative de selection et d'adaptation de quelques especes a l'etang de pisciculture. Centre Technique Forestier Tropical, Nogent-sur-Marne

  • Montgomery RD (1965) The medical significance of cyanogens in plant foodstuffs. Am J Clin Nutr 17:103–113

    Article  CAS  Google Scholar 

  • Nagahara N, Nishino T (1996) Role of amino acid residues in the active site of rat liver mercaptopyruvate sulphurtransferases. J Biol Chem 271:27395–27401. doi:10.1074/jbc.271.44.27395

    Article  CAS  Google Scholar 

  • Nagahara N, Okazaki T, Nishino T (1995) Cytosolic mercaptopyruvate sulphurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site, amino acid sequence and the increase in mercaptopyruvate sulphurtransferase activity of rhodanese by site directed mutagenesis. J Biol Chem 270:16230–16235. doi:10.1074/jbc.270.27.16230

    Article  CAS  Google Scholar 

  • Nagahara N, Ito T, Minam M (1999) Mercaptopyruvate sulphurtransferase as a defence against cyanide toxications; molecular properties and mode of detoxification. Histol Histopathol 14:1277–1286

    CAS  PubMed  Google Scholar 

  • Ogata K, Xing D, Volini M (1989) Bovine mitochondrial rhodanese is a phosphoprotein. J Biol Chem 246(5):2718–2725

    Google Scholar 

  • Ploegman JH, Drent G, Kalk KH, Hol WG (1978) Structure of bovine liver rhodanese. I. Structure determination at 2.5 Å resolution and a comparison of the conformation and sequence of its two domains. J Mol Biol 123:557–594. doi:10.1016/0022-2836(78)90207-3

    Article  CAS  Google Scholar 

  • Russell J, Weng L, Kein PS, Heinrikson RL (1978) The covalent structure of bovine liver rhodanese. J Biol Chem 253:8102–8108

    CAS  PubMed  Google Scholar 

  • Schlesinger P, Westley J (1974) An expanded mechanism for rhodanese catalysis. J Biol Chem 249:780–788

    CAS  PubMed  Google Scholar 

  • Segel IH (ed) (1975) Enzymes. In: Segel IH (ed) Biochemical calculations; 2nd edn. Wiley, New York, pp 278–281

  • Smith LL, Broderius SJ, Oseid DM, Kimball GL, Koenst WM (1978) Acute toxicity of hydrogen cyanide to freshwater fishes. Arch Environ Contam Toxicol 7:325–337

    Article  CAS  Google Scholar 

  • Smith LL, Broderius SJ Jr, Oseid DM, Kimball GL, Koenst WM, Lind DT (1979) Acute and chronic toxicity of HCN to fish and invertebrates. U.S. Environ. Prot. Agency Rep. 600/3-79-009, 129 pp

  • Smith J, Urbanska KM (1986) Rhodanese activity in Lotus corniculatus sensu-lato. J Nat Hist 20(6):1467–1476. doi:10.1080/00222938600770991

    Article  Google Scholar 

  • Sorbo BH (1951) On the properties of rhodanese. Acta Chem Scand 5:724–726. doi:10.3891/acta.chem.scand.05-0724

    Article  CAS  Google Scholar 

  • Sorbo BH (1953a) Crystalline rhodanese. Enzyme catalyzed reaction. Acta Chem Scand 7:1137–1145. doi:10.3891/acta.chem.scand.07-1137

    Article  CAS  Google Scholar 

  • Sorbo BH (1953b) Crystalline rhodanese. Acta Chem Scand 7:1129–1136. doi:10.3891/acta.chem.scand.07-1129

    Article  CAS  Google Scholar 

  • Sorbo BH (1955) Rhodanese. In: Sidney PL, Kaplan NO (eds) Methods of enzymology, vol 2. Academic Press, New York, pp 334–337

  • Sorbo BH (1957) Enzyme transfer of sulphur from mercaptopyruvate to sulphate or sulphonates. Biochim Biophys Acta 24:324–329. doi:10.1016/0006-3002(57)90201-9

    Article  CAS  Google Scholar 

  • Taniguichi T, Kimura T (1974) Role of 3-mercaptopyruvate sulphurtransferase in the formation of the iron chromophore of adrenal ferredoxin. Biochim Biophys Acta 364:284–295

    Article  Google Scholar 

  • Tolba MK (1982) Development without destruction. Evolving environmental perceptions. Dublin, Tycooly. Nat Resour Environ Ser 12:197

    Google Scholar 

  • Towill LE, Drury JS, Whitfield BL, Lewis EB, Galyan EL, Hammons AS (1978) Reviews of the environmental effects of pollutants vs. cyanide. U.S. Environmental Protection Agency (EPA) Rep 600/1-78-027. EPA, Washington D.C.

  • Ulmer DD, Vallee BL (1972) Role of metals in sulphurtranferases activity. Annu Rev Biochem 32:86–90

    Google Scholar 

  • Vazquez E, Gazzaniga S, Polo C, Batlle A (1997) Mitochondrial and cytosolic rhodanese from liver of DAB-treated mice. III. Inhibition kinetic studies. Cancer Biochem Biophys 15(4):285–293

    CAS  PubMed  Google Scholar 

  • Villarejo M, Westley J (1963) Mechanism of rhodanese catalysis of thiosulphate oxidation-relation. J Biol Chem 238:4016–4060

    CAS  PubMed  Google Scholar 

  • Volini M, DeToma F, Westley J (1967) Dimeric structure and zinc content of bovine liver rhodanese. J Biol Chem 242:5220–5225

    CAS  PubMed  Google Scholar 

  • Wang SF, Volini M (1968) Studies on the active site of rhodanese. J Biol Chem 243:5465–5470

    CAS  PubMed  Google Scholar 

  • Warburg O (1911) Inhibition of the action of prussic acid in living cells. Hoppe Seylers Z Physiol Chem 76:331–346

    Article  Google Scholar 

  • Westley J (ed) (1980) Rhodanese and the sulphane pool. In: Jakoby WB (ed) Enzymatic basis of detoxification, vol 2. Academic Press, New York, pp 245–259

  • Whitaker JR (1972) Effect of temperature on enzyme catalysed reaction. In: Whitaker JR (ed) Principles of enzymology for the food science. Marcel Dekker, New York, pp 319–348

    Google Scholar 

  • Wokes F, Willimott SG (1951) The determination of cyanide in seed. J Pharm Pharmacol 3:905–916

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Femi Kayode Agboola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akinsiku, O.T., Agboola, F.K., Kuku, A. et al. Physicochemical and kinetic characteristics of rhodanese from the liver of African catfish Clarias gariepinus Burchell in Asejire lake. Fish Physiol Biochem 36, 573–586 (2010). https://doi.org/10.1007/s10695-009-9328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-009-9328-4

Keywords

Navigation