Skip to main content
Log in

DNA content of hepatocyte and erythrocyte nuclei of the spined loach (Cobitis taenia L.) and its polyploid forms

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We analyzed the DNA content of hepatocyte and erythrocyte nuclei of the spined loach Cobitis taenia (diploid) and its allopolyploid forms. Twenty triploid females and one tetraploid were used. At least 20,000 hepatocyte and erythrocyte nuclei were acquired and analyzed by flow cytometry. C. taenia erythrocyte nuclei contain 3.15 ± 0.21 pg of DNA and the hepatocyte nuclei 4.45 ± 0.46 pg of DNA. Triploid Cobitis have 5.08 ± 0.41 pg of DNA in erythrocyte nuclei and 6.11 ± 0.40 pg of DNA in hepatocyte nuclei, whereas the tetraploid erythrocyte and hepatocyte nuclei contained 6.60 and 7.40 pg of DNA, respectively. In general, the DNA contents correlate positively with the ploidy level of the fish investigated. The DNA content variation in the hepatocyte and erythrocyte nuclei may be due to differences in extent of chromatin condensation, which is more pronounced in the erythrocyte than hepatocyte nuclei, or to the several orders of ploidy that occur in the parenchymal liver cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Boron A (1994) Use of erythrocyte measurements to detect natural triploids of spined loach Cobitis taenia (L.). Cytobios 78:197–202

    Google Scholar 

  • Boron A (1999) Banded karyotype of spined loach Cobitis taenia and triploid Cobitis from Poland. Genetica 3:293–300. doi:10.1023/A:1003939813878

    Article  Google Scholar 

  • Boron A (2003) Karyotypes and cytogenetic diversity of the genus Cobitis (Pisces, Cobitidae) in Poland: a review. Cytogenetic evidence for a hybrid origin of some Cobitis triploids. Folia Biol (Krakow) 51:50–54

    Google Scholar 

  • Castillo-Davis CI, Bedford TB, Hartl DL (2004) Accelerated rates of intron gain/loss and protein evolution in duplicate genes in human and mouse malaria parasites. Mol Biol Evol 21:1422–1427. doi:10.1093/molbev/msh143

    Article  CAS  Google Scholar 

  • Ciudad J, Cid E, Velasco A, Lara JM, Aijon J, Orfa A (2002) Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species. Cytometry 48:20–25. doi:10.1002/cyto.10100

    Article  CAS  Google Scholar 

  • Dallas CE, Lingenfelser SF, Lingenfelser JT, Hollomon K, Jagoe CH, Kind JA, Chesser RK, Smith MH (1998) Flow cytometric analysis of erythrocyte and leukocyte DNA in fish from chernobyl-contaminated ponds in the Ukraine. Ecotoxicology 7:211–219. doi:10.1023/A:1008986727743

    Article  CAS  Google Scholar 

  • Fenerich PC, Foresti F, Oliveira C (2004) Nuclear DNA content in 20 species of Siluriformes (Teleostei; Ostariophysi) from the Neotropical region. Genet Mol Biol 21:47–54

    Google Scholar 

  • Gao Z, Wang W, Abbas K, Zhou X, Yang Y, Diana JS, Wang H, Wang H, Li Y, Sun Y (2007) Haematological characterization of loach Misgurnus anguillicaudatus: comparison among diploid, triploid and tetraploid specimens. Fish Physiol Biochem 147:1001–1008

    Google Scholar 

  • Gregory TR (2000) Animal genome size database. http://www.genomesize.com

  • Hedley DW, Friedlander ML, Taylor IW, Rugg CA, Musgrove EA (1983) Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem 11:1333–1335

    Article  Google Scholar 

  • Hickey AJR, Clements KD (2005) Genome size evolution in New Zealand triplefin fishes. J Hered 96:356–362. doi:10.1093/jhered/esi061

    Article  CAS  Google Scholar 

  • Hinergardner R (1968) Evolution of cellular DNA content in teleost fishes. Am Nat 102:517–523. doi:10.1086/282564

    Article  Google Scholar 

  • Hinergardner R, Rosen DE (1972) Cellular DNA content and the evolution in teleostean fishes. Am Nat 951:621–644. doi:10.1086/282801

    Article  Google Scholar 

  • Hoehn H, Johnston P, Callis J (1977) Flow-cytogenetic sources of DNA content variation among euploid individuals. Cytogenet Cell Genet 19:94–107

    Article  CAS  Google Scholar 

  • Juchno D, Boron A, Golaszewski J (2007) Comparative morphology and histology of the ovaries of the spined loach Cobitis taenia L. and natural allopolyploids of Cobitis (Cobitidae). J Fish Biol 70:1392–1411

    Article  Google Scholar 

  • Lamatsch DK, Steinlein C, Schmid M, Schartl M (2000) Non-invasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecillia formosa. Cytometry 39:91–95. doi:10.1002/(SICI)1097-0320(20000201)39:2<91::AID-CYTO1>3.0.CO;2-4

    Article  CAS  Google Scholar 

  • Le Comber SC, Smith C (2004) Polyploidy in fishes: pattern and processes. Biol J Linn Soc Lond 82:431–442. doi:10.1111/j.1095-8312.2004.00330.x

    Article  Google Scholar 

  • Lynch M, Force A (2000) Gene duplication and the origin of interspecific genome incompatibility. Am Nat 156:590–605. doi:10.1086/316992

    Article  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437. doi:10.1146/annurev.genet.34.1.401

    Article  CAS  Google Scholar 

  • Peruzzi S, Chatain B (2003) Induction of tetraploid gynogenesis in the European sea bass (Dicentrarchus labrax L.). Genetica 119:225–228. doi:10.1023/A:1026077405294

    Article  CAS  Google Scholar 

  • Pie MR, Torres RA, Brito DMA (2007) Evolution of genome size in fishes: a phylogenetic test of the Hinegardner and Rosen hypothesis. Genetica 131:51–58. doi:10.1007/s10709-006-9112-7

    Article  CAS  Google Scholar 

  • Sezaki K, Kobayasi H, Watabe S, Hashimoto K (1985) Erythrocyte size and polyploidy of cobitid fishes in Japan. Bull Jap Soc Fisher 51:777–781

    Article  Google Scholar 

  • Swarup H (1959) Effects of triploidy on the body size, general organization and cellular structure in Gasterosteus aculeatus (L.). J Genet 56:143–155. doi:10.1007/BF02984741

    Article  Google Scholar 

  • Taylor JS, Van de Peer Y, Meyer A (2001) Genome duplication, divergent resolution and speciation. Trends Genet 7:299–301. doi:10.1016/S0168-9525(01)02318-6

    Article  Google Scholar 

  • Vasil’ev VP, Vinogradov AE, Rozanov YuM, VasilIeva ED (1999) Cellular DNA content in different forms of the bisexual-unisexual complex of spined loaches of the genus Cobitis and in luther’s spined loach C. lutheri (Cobitidae). J Ichthyol 39:377–383 (in Russian)

    Google Scholar 

  • Vindelow IL, Christensen IJ, Nissen NJ (1983) Standardization of high-resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout blood cells as internal reference standards. Cytometry 3:328–331. doi:10.1002/cyto.990030504

    Article  Google Scholar 

  • Vinogradov AE (1998) Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31:100–109. doi:10.1002/(SICI)1097-0320(19980201)31:2<100::AID-CYTO5>3.0.CO;2-Q

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Elżbieta Pyza chief of the Department for providing facility used during this study and hospitality for one of us (W·K.), Dr. Gregory Tylko who introduced me (W·K.) to the techniques of Flow Cytometry. We would like to thank N.J. Severs for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wincenty Kilarski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juchno, D., Lackowska, B., Boron, A. et al. DNA content of hepatocyte and erythrocyte nuclei of the spined loach (Cobitis taenia L.) and its polyploid forms. Fish Physiol Biochem 36, 523–529 (2010). https://doi.org/10.1007/s10695-009-9322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-009-9322-x

Keywords

Navigation