Fish Physiology and Biochemistry

, Volume 36, Issue 3, pp 523–529 | Cite as

DNA content of hepatocyte and erythrocyte nuclei of the spined loach (Cobitis taenia L.) and its polyploid forms

  • Dorota Juchno
  • Bozena Lackowska
  • Alicja Boron
  • Wincenty Kilarski


We analyzed the DNA content of hepatocyte and erythrocyte nuclei of the spined loach Cobitis taenia (diploid) and its allopolyploid forms. Twenty triploid females and one tetraploid were used. At least 20,000 hepatocyte and erythrocyte nuclei were acquired and analyzed by flow cytometry. C. taenia erythrocyte nuclei contain 3.15 ± 0.21 pg of DNA and the hepatocyte nuclei 4.45 ± 0.46 pg of DNA. Triploid Cobitis have 5.08 ± 0.41 pg of DNA in erythrocyte nuclei and 6.11 ± 0.40 pg of DNA in hepatocyte nuclei, whereas the tetraploid erythrocyte and hepatocyte nuclei contained 6.60 and 7.40 pg of DNA, respectively. In general, the DNA contents correlate positively with the ploidy level of the fish investigated. The DNA content variation in the hepatocyte and erythrocyte nuclei may be due to differences in extent of chromatin condensation, which is more pronounced in the erythrocyte than hepatocyte nuclei, or to the several orders of ploidy that occur in the parenchymal liver cells.


Cobitis DNA Polyploidy Spined loach 



We thank Professor Elżbieta Pyza chief of the Department for providing facility used during this study and hospitality for one of us (W·K.), Dr. Gregory Tylko who introduced me (W·K.) to the techniques of Flow Cytometry. We would like to thank N.J. Severs for critical comments on the manuscript.


  1. Boron A (1994) Use of erythrocyte measurements to detect natural triploids of spined loach Cobitis taenia (L.). Cytobios 78:197–202Google Scholar
  2. Boron A (1999) Banded karyotype of spined loach Cobitis taenia and triploid Cobitis from Poland. Genetica 3:293–300. doi: 10.1023/A:1003939813878 CrossRefGoogle Scholar
  3. Boron A (2003) Karyotypes and cytogenetic diversity of the genus Cobitis (Pisces, Cobitidae) in Poland: a review. Cytogenetic evidence for a hybrid origin of some Cobitis triploids. Folia Biol (Krakow) 51:50–54Google Scholar
  4. Castillo-Davis CI, Bedford TB, Hartl DL (2004) Accelerated rates of intron gain/loss and protein evolution in duplicate genes in human and mouse malaria parasites. Mol Biol Evol 21:1422–1427. doi: 10.1093/molbev/msh143 CrossRefGoogle Scholar
  5. Ciudad J, Cid E, Velasco A, Lara JM, Aijon J, Orfa A (2002) Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species. Cytometry 48:20–25. doi: 10.1002/cyto.10100 CrossRefGoogle Scholar
  6. Dallas CE, Lingenfelser SF, Lingenfelser JT, Hollomon K, Jagoe CH, Kind JA, Chesser RK, Smith MH (1998) Flow cytometric analysis of erythrocyte and leukocyte DNA in fish from chernobyl-contaminated ponds in the Ukraine. Ecotoxicology 7:211–219. doi: 10.1023/A:1008986727743 CrossRefGoogle Scholar
  7. Fenerich PC, Foresti F, Oliveira C (2004) Nuclear DNA content in 20 species of Siluriformes (Teleostei; Ostariophysi) from the Neotropical region. Genet Mol Biol 21:47–54Google Scholar
  8. Gao Z, Wang W, Abbas K, Zhou X, Yang Y, Diana JS, Wang H, Wang H, Li Y, Sun Y (2007) Haematological characterization of loach Misgurnus anguillicaudatus: comparison among diploid, triploid and tetraploid specimens. Fish Physiol Biochem 147:1001–1008Google Scholar
  9. Gregory TR (2000) Animal genome size database.
  10. Hedley DW, Friedlander ML, Taylor IW, Rugg CA, Musgrove EA (1983) Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem 11:1333–1335CrossRefGoogle Scholar
  11. Hickey AJR, Clements KD (2005) Genome size evolution in New Zealand triplefin fishes. J Hered 96:356–362. doi: 10.1093/jhered/esi061 CrossRefGoogle Scholar
  12. Hinergardner R (1968) Evolution of cellular DNA content in teleost fishes. Am Nat 102:517–523. doi: 10.1086/282564 CrossRefGoogle Scholar
  13. Hinergardner R, Rosen DE (1972) Cellular DNA content and the evolution in teleostean fishes. Am Nat 951:621–644. doi: 10.1086/282801 CrossRefGoogle Scholar
  14. Hoehn H, Johnston P, Callis J (1977) Flow-cytogenetic sources of DNA content variation among euploid individuals. Cytogenet Cell Genet 19:94–107CrossRefGoogle Scholar
  15. Juchno D, Boron A, Golaszewski J (2007) Comparative morphology and histology of the ovaries of the spined loach Cobitis taenia L. and natural allopolyploids of Cobitis (Cobitidae). J Fish Biol 70:1392–1411CrossRefGoogle Scholar
  16. Lamatsch DK, Steinlein C, Schmid M, Schartl M (2000) Non-invasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecillia formosa. Cytometry 39:91–95. doi: 10.1002/(SICI)1097-0320(20000201)39:2<91::AID-CYTO1>3.0.CO;2-4 CrossRefGoogle Scholar
  17. Le Comber SC, Smith C (2004) Polyploidy in fishes: pattern and processes. Biol J Linn Soc Lond 82:431–442. doi: 10.1111/j.1095-8312.2004.00330.x CrossRefGoogle Scholar
  18. Lynch M, Force A (2000) Gene duplication and the origin of interspecific genome incompatibility. Am Nat 156:590–605. doi: 10.1086/316992 CrossRefGoogle Scholar
  19. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437. doi: 10.1146/annurev.genet.34.1.401 CrossRefGoogle Scholar
  20. Peruzzi S, Chatain B (2003) Induction of tetraploid gynogenesis in the European sea bass (Dicentrarchus labrax L.). Genetica 119:225–228. doi: 10.1023/A:1026077405294 CrossRefGoogle Scholar
  21. Pie MR, Torres RA, Brito DMA (2007) Evolution of genome size in fishes: a phylogenetic test of the Hinegardner and Rosen hypothesis. Genetica 131:51–58. doi: 10.1007/s10709-006-9112-7 CrossRefGoogle Scholar
  22. Sezaki K, Kobayasi H, Watabe S, Hashimoto K (1985) Erythrocyte size and polyploidy of cobitid fishes in Japan. Bull Jap Soc Fisher 51:777–781CrossRefGoogle Scholar
  23. Swarup H (1959) Effects of triploidy on the body size, general organization and cellular structure in Gasterosteus aculeatus (L.). J Genet 56:143–155. doi: 10.1007/BF02984741 CrossRefGoogle Scholar
  24. Taylor JS, Van de Peer Y, Meyer A (2001) Genome duplication, divergent resolution and speciation. Trends Genet 7:299–301. doi: 10.1016/S0168-9525(01)02318-6 CrossRefGoogle Scholar
  25. Vasil’ev VP, Vinogradov AE, Rozanov YuM, VasilIeva ED (1999) Cellular DNA content in different forms of the bisexual-unisexual complex of spined loaches of the genus Cobitis and in luther’s spined loach C. lutheri (Cobitidae). J Ichthyol 39:377–383 (in Russian)Google Scholar
  26. Vindelow IL, Christensen IJ, Nissen NJ (1983) Standardization of high-resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout blood cells as internal reference standards. Cytometry 3:328–331. doi: 10.1002/cyto.990030504 CrossRefGoogle Scholar
  27. Vinogradov AE (1998) Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31:100–109. doi: 10.1002/(SICI)1097-0320(19980201)31:2<100::AID-CYTO5>3.0.CO;2-Q CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dorota Juchno
    • 1
  • Bozena Lackowska
    • 2
  • Alicja Boron
    • 1
  • Wincenty Kilarski
    • 3
  1. 1.Department of ZoologyUniversity of Warmia and MazuryOlsztynPoland
  2. 2.Department of Cancer PathologyOncology CenterKrakowPoland
  3. 3.Department of Cytology and Histology, Institute of ZoologyJagiellonian UniversityKrakowPoland

Personalised recommendations