Genetic diversity and differentiation of sea trout (Salmo trutta) populations in Lithuanian rivers assessed by microsatellite DNA variation

  • Aurelija Samuiloviene
  • Antanas Kontautas
  • Riho Gross


The genetic diversity and differentiation of sea trout were studied in three river basins in Lithuania: Akmena-Dane, Bartuva, and Nemunas. A total of 282 individuals were genotyped at eight microsatellite loci. A similar level of genetic diversity was found in all of the populations studied: mean allelic richness ranged from 3.64 to 5.03, and average expected heterozygosity ranged from 0.588 to 0.721. Significant genetic divergence was observed among the different river basins as well as between populations within the drainages. All pairwise F ST values were highly significant, ranging from 0.027 to 0.197. The analysis of molecular variance showed rather weak hierarchical population structuring within the Nemunas basin, which may be explained by extensive gene flow among different river basins or, alternatively, reflect the influence of artificial breeding. Information on genetic diversity and differentiation of the Lithuanian sea trout populations will be useful for future management decisions.


Baltic sea Migratory brown trout Population genetics 



We are grateful to colleagues from the Coastal Research and Planning Institute for collecting Lithuanian sea trout samples and to Marja-Liisa Koljonen for providing Finnish sea trout samples. This work was financed by the Estonian Science Foundation (grants no. 5,729 and 7,348), Estonian Ministry of Education and Science (grant no. SF1080022s07) and ALARM project of the 6th framework program.


  1. Allendorf FW, Leary RF (1988) Conservation and distribution of genetic variation in a polytypic species, the cutthroat trout. Conserv Biol 2:170–184. doi: 10.1111/j.1523-1739.1988.tb00168.x CrossRefGoogle Scholar
  2. Bernatchez L (2001) The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evol Int J Org Evol 55:351–379Google Scholar
  3. Bernatchez L, Osinov AG (1995) Genetic diversity of trout (genus Salmo) from its most eastern native range based on mitochondrial DNA and nuclear gene variation. Mol Ecol 4:285–297. doi: 10.1111/j.1365-294X.1995.tb00222.x CrossRefPubMedGoogle Scholar
  4. Bernatchez L, Guyomard R, Bonhomme F (1992) DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout (Salmo trutta) populations. Mol Ecol 1:161–173. doi: 10.1111/j.1365-294X.1992.tb00172.x CrossRefPubMedGoogle Scholar
  5. Elliott JM (1994) Quantitative ecology and the brown trout. Oxford University Press, Oxford, UKGoogle Scholar
  6. FGFRI (2006) Lithuania country report. Baltic sea trout workshop. Kotka, Finland, Google Scholar
  7. Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from Accessed 8 Sept 2008
  8. Gross R, Nilsson J, Kohlmann K et al (2003) Distribution of growth hormone 1 gene haplotypes among Atlantic salmon, Salmo salar L. populations in Europe. In: Veselov AJE, Ieshko EP, Nemova NN et al (eds) Atlantic salmon: biology conservation and restoration. Petrozavodsk, Pakoni, pp 32–37Google Scholar
  9. Guo S, Thompson E (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372. doi: 10.2307/2532296 CrossRefPubMedGoogle Scholar
  10. Hansen MM (2002) Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Mol Ecol 11:1003–1015. doi: 10.1046/j.1365-294X.2002.01495.x CrossRefPubMedGoogle Scholar
  11. Hansen MM, Hynes RA, Loeschcke V et al (1995) Assessment of the stocked or wild origin of anadromous brown trout (Salmo trutta L.) in a Danish river system using, mitochondrial DNA RFLP analysis. Mol Ecol 4:189–198. doi: 10.1111/j.1365-294X.1995.tb00208.x CrossRefGoogle Scholar
  12. Hansen MM, DE Ruzzante, Nielsen EE et al (2000) Microsatellite and mitochondrial DNA polymorphism reveals life-history dependent interbreeding between hatchery and wild brown trout (Salmo trutta L.). Mol Ecol 9:583–594. doi: 10.1046/j.1365-294x.2000.00898.x CrossRefPubMedGoogle Scholar
  13. Hansen MM, Ruzzante DE, Nielsen EE et al (2001a) Brown trout (Salmo trutta) stocking impact assessment using microsatellite DNA markers. Ecol Appl 11:148–160. doi: 10.1890/1051-0761(2001)011[0148:BTSTSI]2.0.CO;2 CrossRefGoogle Scholar
  14. Hansen MM, Nielsen EE, Bekkevold D et al (2001b) Admixture analysis and stocking impact assessment in brown trout (Salmo trutta), estimated with incomplete baseline data. Can J Fish Aquat Sci 58:1853–1860. doi: 10.1139/cjfas-58-9-1853 CrossRefGoogle Scholar
  15. Hansen MM, Ruzzante DE, Nielsen EE et al (2002) Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Mol Ecol 11:2523–2535. doi: 10.1046/j.1365-294X.2002.01634.x CrossRefPubMedGoogle Scholar
  16. Heggenes J, Røed KH, Høyheim B et al (2002) Microsatellite diversity assessment of brown trout (Salmo trutta) population structure indicate limited genetic impact of stocking in a Norwegian alpine lake. Ecol Freshw Fish 11:93–100. doi: 10.1034/j.1600-0633.2002.00009.x CrossRefGoogle Scholar
  17. Hindar K, Jonsson B, Ryman N et al (1991a) Genetic relationships among landlocked, resident, and anadromous brown trout, Salmo trutta L. Heredity 66:83–91. doi: 10.1038/hdy.1991.11 CrossRefGoogle Scholar
  18. Hindar K, Ryman N, Utter F (1991b) Genetic effects of cultured fish on natural populations. Can J Fish Aquat Sci 48:945–957. doi: 10.1139/f91-111 CrossRefGoogle Scholar
  19. Kesminas V, Virbickas T, Balkuvienė B et al (2005) Ichthyological reserves of Lithuania. Institute of Ecology of Vilnius University, VilniusGoogle Scholar
  20. Koljonen ML (2006) Annual changes in the proportions of wild and hatchery Atlantic salmon (Salmo salar) caught in the Baltic sea. ICES J Mar Sci 63:1274–1285. doi: 10.1016/j.icesjms.2006.04.010 CrossRefGoogle Scholar
  21. Koljonen ML, Jansson H, Paaver T et al (1999) Phylogeographic lineages and differentiation pattern of Atlantic salmon (Salmo salar) in the Baltic sea with management implications. Can J Fish Aquat Sci 56:1766–1780. doi: 10.1139/cjfas-56-10-1766 CrossRefGoogle Scholar
  22. Koljonen ML, Tähtinen J, Säisa M et al (2002) Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programmes and the geographic distribution of microsatellite variation. Aquaculture 212:69–92. doi: 10.1016/S0044-8486(01)00808-0 CrossRefGoogle Scholar
  23. Laikre L, Järvi T, Johansson L et al (2002) Spatial and temporal population structure of sea trout at the Island of Gotland, Sweden, delineated from mitochondrial DNA. J Fish Biol 60:49–71. doi: 10.1111/j.1095-8649.2002.tb02387.x CrossRefGoogle Scholar
  24. Laird PW, Zijderveld A, Linders K et al (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19:4293. doi: 10.1093/nar/19.15.4293 CrossRefPubMedGoogle Scholar
  25. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170. doi: 10.1007/BF02300753 CrossRefPubMedGoogle Scholar
  26. Nilsson J, Gross R, Asplund T et al (2001) Matrilinear phylogeography of Atlantic salmon (Salmo salar L.) in Europe and postglacial colonization of the Baltic sea area. Mol Ecol 10:89–102. doi: 10.1046/j.1365-294X.2001.01168.x CrossRefPubMedGoogle Scholar
  27. Nilsson J, Östergren J, Lundqvist H et al (2008) Genetic assessment of Atlantic salmon Salmo salar and sea trout Salmo trutta stocking in a Baltic sea river. J Fish Biol 73:1201–1215. doi: 10.1111/j.1095-8649.2008.01992.x CrossRefGoogle Scholar
  28. Nomura T (1999) Effective population size in supportive breeding. Conserv Biol 13:670–672. doi: 10.1046/j.1523-1739.1999.97496.x CrossRefGoogle Scholar
  29. Norris AT, Bradley DG, Cunningham EP (1999) Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 180:247–264. doi: 10.1016/S0044-8486(99)00212-4 CrossRefGoogle Scholar
  30. Ohta T (1982) Population genetics of multigene families. Adv Biophys 15:173–179. doi: 10.1016/0065-227X(82)90008-9 CrossRefPubMedGoogle Scholar
  31. Ota T (1993) DISPAN: genetic distance and phylogenetic analysis software. Pennsylvania State University, University ParkGoogle Scholar
  32. Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503. doi: 10.1093/jhered/90.4.502 CrossRefGoogle Scholar
  33. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  34. Raymond M, Rousset F (1995a) GENEPOP: population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  35. Raymond M, Rousset F (1995b) An exact test for population differentiation. Evol Int J Org Evol 49:1280–1283. doi: 10.2307/2410454 Google Scholar
  36. Rice WR (1989) Analysing tables of statistical tests. Evol Int J Org Evol 43:223–225. doi: 10.2307/2409177 Google Scholar
  37. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  38. Ryman N (1994) Supportive breeding and effective population size: differences between inbreeding and variance effective numbers. Conserv Biol 8:888–890. doi: 10.1046/j.1523-1739.1994.08030863-14.x CrossRefGoogle Scholar
  39. Ryman N, Laikre L (1991) Effects of supportive breeding on the genetically effective population size. Conserv Biol 5:325–329. doi: 10.1111/j.1523-1739.1991.tb00144.x CrossRefGoogle Scholar
  40. Ryman N, Jorde PE, Laikre L (1995) Supportive breeding and variance effective population size. Conserv Biol 9:1619–1628. doi: 10.1046/j.1523-1739.1995.09061619.x CrossRefGoogle Scholar
  41. Säisä M, Koljonen ML, Tahtinen J (2003) Genetic changes in Atlantic salmon stocks since historical times and the effective population size of long-term captive breeding programme. Conserv Genet 4:613–627. doi: 10.1023/A:1025680002296 CrossRefGoogle Scholar
  42. Säisä M, Koljonen ML, Gross R et al (2005) Population genetic structure and postglacial colonization of Atlantic salmon (Salmo salar) in the Baltic sea area based on microsatellite DNA variation. Can J Fish Aquat Sci 62:1887–1904. doi: 10.1139/f05-094 CrossRefGoogle Scholar
  43. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN: software for population genetics data analysis (version 2.000). Available at Accessed 9 Sept 2008
  44. Vasemägi A, Gross R, Paaver T et al (2005a) Analysis of gene associated tandem repeat markers in Atlantic salmon (Salmo salar L.) populations: implications for restoration and conservationin the Baltic sea. Conserv Genet 6:385–397. doi: 10.1007/s10592-005-4974-2 CrossRefGoogle Scholar
  45. Vasemägi A, Gross R, Paaver T, Koljonen ML et al (2005b) Extensive immigration from compensatory hatchery releases into wild Atlantic salmon population in the Baltic sea: spatio-temporal analysis over 18 years. Heredity 95:76–83. doi: 10.1038/sj.hdy.6800693 CrossRefPubMedGoogle Scholar
  46. Virbickas T, Kesminas V (2002) Salmon (Salmo salar) and sea trout (Salmo trutta) restocking efficiency in potential rivers of Lithuania. Initial study. Acta Zool Lithuanica 12:129–137Google Scholar
  47. Waples RS, Do C (1994) Genetic risk associated with supplementation of Pacific salmonids: captive broodstock programs. Can J Fish Aquat Sci 51[Suppl 1]:310–329. doi: 10.1139/f94-318 CrossRefGoogle Scholar
  48. Was A, Wenne R (2002) Genetic differentiation in hatchery and wild sea trout (Salmo trutta) in the Southern Baltic at microsatellite loci. Aquaculture 204:493–506. doi: 10.1016/S0044-8486(01)00835-3 CrossRefGoogle Scholar
  49. Was A, Wenne R (2003) Microsatellite DNA polymorphism in intensely enhanced populations of sea trout (Salmo trutta) in the Southern Baltic. Mar Biotechnol 5:234–243. doi: 10.1007/s10126-002-0068-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Aurelija Samuiloviene
    • 1
  • Antanas Kontautas
    • 1
  • Riho Gross
    • 2
  1. 1.Coastal Research and Planning InstituteKlaipeda UniversityKlaipedaLithuania
  2. 2.Department of Aquaculture, Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia

Personalised recommendations