Fish Physiology and Biochemistry

, Volume 30, Issue 2, pp 119–127 | Cite as

ATP Content and Adenine Nucleotide Catabolism in African Catfish Spermatozoa Stored in Various Energetic Substrates

  • M.S. Zietara
  • E. Slominska
  • J. Swierczynski
  • E. Rurangwa
  • F. Ollevier
  • E.F. Skorkowski


Influence of various energetic substrates on ATP content and adenine nucleotide catabolism in African catfish, Clarias gariepinus spermatozoa was investigated. Present data indicate that sperm storage at 4 °C in the presence of different energetic substrates leads to time dependent ATP depletion. Among the substrates studied (i.e. glycine, glucose, or lactate plus pyruvate), the lactate plus pyruvate seems to be the most favourable substrate to maintain ATP concentration. ATP depletion is associated with increase of the AMP content, while ADP concentration is changing only slightly. Moreover, significant increase in hypoxanthine content both in the sperm and a storage medium was found. Adenine nucleotide energy charge (AEC) decreased significantly during the first 24 h when sperm was stored in the presence of glycine. During the same period, only slight decrease in AEC was observed in spermatozoa stored in the presence of glucose and no significant changes were found in the presence of lactate plus pyruvate. A further decrease in AEC was observed until 120 h of storage in the medium containing glycine, lactate plus pyruvate or glucose. However, the changes were relatively small when spermatozoa were stored in the presence of lactate plus pyruvate. Important finding is that in contrast to the results reported recently, AEC value in fresh milt (at 0 time of storage) was in the normal range. The present study shows that African catfish spermatozoa are able to maintain physiological level of ATP and AEC when they are stored in the presence of favourable energetic substrates. In conclusion, the results of this investigation suggest that successful short-term storage of African catfish milt depends on energetic substrates supply.


adenylate nucleotides African catfish spermatozoa energetic substrates motility sperm storage 



adenine nucleotide energy charge


adenosine diphosphate


adenosine monophosphate


adenosine triphosphate


cyclic AMP


high performance liquid chromatography


inosine monophosphate


total adenine nucleotide.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, D.E 1968The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiersBiochemistry740304034CrossRefPubMedGoogle Scholar
  2. Atkinson, D.E 1977Cellular Energy Metabolism and its RegulationAcademic PressNew YorkGoogle Scholar
  3. Barros, C, Gonzales, J, Herrera, E, Bustos-Obregon, E 1979Human sperm penetration into zona-fre hamster oocyte as a test to evaluate the sperm fertilising abilityAndrologia11197210PubMedGoogle Scholar
  4. Benadiva, C.A, Nulsen, J, Siano, L, Jennings, J, Givargis, H.B, Maier, D 1999Intracytoplasmic sperm injection overcomes previous fertilization failure with conventional in vitro fertilizationFertil. Steril7210411044CrossRefPubMedGoogle Scholar
  5. Billard, R, Cosson, J, Ferville, F, Brun, R, Rouault, T, Willot, P 1999Motility analysis and energetics of the Siberian sturgeon Acipenser baeri spermatozoaJ. Appl. Ichthyol15199203Google Scholar
  6. Billard, R, Linhart, O, Fierville, F, Cosson, J 1997Motility of European catfish Silurus glanis spermatozoa in testes and in miltPol. Arch. Hydrobiol44115122Google Scholar
  7. Bontemps, F, den Berghe, G, Hers, H.G 1986Pathways of adenine nucleotide catabolism in erythrocytesJ. Clim. Investig77824830Google Scholar
  8. Christen, R, Gatti, J.L, Billard, R 1987Trout sperm motility. The transient movement of trout sperm is related to changes in the concentration of ATP following the activation of the flagellar movementEur. J. Biochem166667671CrossRefPubMedGoogle Scholar
  9. Cosson, M.P, Cosson, J, Andre, F, Billard, R 1995cAMP/ATP relationship in the activation of trout sperm motility: their interaction in membrane-deprived models and in live spermatozoaCell Motil. Cytoskeleton31159176CrossRefPubMedGoogle Scholar
  10. Cummins, J.M, Pember, S.M, Jequier, A.M, Yovich, J.L, Hartman, P.E 1991A test of the human sperm acrosome reaction following ionophore challenge. Relationship to fertility and other seminal parametersJ. Androl1298103PubMedGoogle Scholar
  11. Dreanno, C, Cosson, J, Suquet, M, Cibert, C, Fauvel, C, Dorange, G, Billard, R 1999aEffects of osmolarity, morphology perturbations and intracellular nucleotide content during the movement of sea bas (Dicentrarchus labrax) spermatozoaJ. Reprod. Fertil116113125Google Scholar
  12. Dreanno, C, Cosson, J, Suquet, M, Seguin, F, Dorange, G, Billard, R 1999bNucleotide content, oxidative phosphorilation, morphology, and fertilizing capacity of turbot (Psetta maxima) spermatozoa during the motility periodMol. Reprod. Dev53230243CrossRefGoogle Scholar
  13. Fetterolf, P.M, Rogers, B.J 1990Prediction of human sperm penetrating ability using computerised motion parametersMol. Reprod. Dev27326331CrossRefPubMedGoogle Scholar
  14. Hayashi, H, Yamamoto, K, Yonekawa, H, Morisawa, M 1987Involvement of tyrosine protein kinase in the initiation of flagellar movement in rainbow trout spermatozoaJ. Biol. Chem2621669216698PubMedGoogle Scholar
  15. Hoshi, K, Katayose, H, Yanagida, K, Kimura, Y, Sato, A 1996The relationship between acridine orange fluorescence of sperm nuclei and the fertilising ability of human spermFertil. Steril66634639PubMedGoogle Scholar
  16. Huisman, E.A, Richter, C.J.J 1987Reproduction, growth, health control and aquacultural potential of the African catfish, Clarias gariepinus (Burchell, 1822)Aquaculture63114CrossRefGoogle Scholar
  17. Inaba, K, Kagami, O, Ogawa, K 1999Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility BiochemBiophys. Res. Commun256177183CrossRefGoogle Scholar
  18. Ingermann, R.L, Robinson, M.L, Cloud, J.G 2003Respiration of steelhead trout sperm: sensitivity to pH and carbon dioxideJ. Fish Biol621323CrossRefGoogle Scholar
  19. Kaletha, K, Thebault, M, Raffin, J.-P 1991Comparative studies on heart and skeletal muscle AMP-deaminase from rainbow trout (Salmo gairdneri)Comp. Biochem. Physiol99B751754Google Scholar
  20. Kime, D.E, Ebrahimi, M, Nysten, K, Roelants, I, Rurangwa, E, Moore, H.D.M, Ollevier, F 1996Use of computer assisted sperm analysis (CASA) for monitoring the effects of pollution on sperm quality of fish; application to effects of zinc and cadmiumAquat. Toxicol36223237CrossRefGoogle Scholar
  21. Liu, D.Y, Du Plessis, Y.P, Nayudu, P.L, Johnson, W.I, Baker, H.W 1988The use of in vitro fertilisation to evaluate putative tests of human sperm functionFertil. Steril49272277PubMedGoogle Scholar
  22. Mansour, N, Lahnsteinerm, F, Berger, B 2003Metabolism of intratesticular spermatozoa of a tropical teleost fish (Clarias garienpinus)Comp. Biochem. Physiol135B285296Google Scholar
  23. Marlewski, M, Smoleñski, R.T, Szolkiewicz, M, Aleksandrowicz, Z, Rutkowski, B, Swierczynski, J 2000Accelerated degradation of adenine nucleotide in erythrocyte of patients with chronic renal failureMol. Cell. Biochem2139397CrossRefPubMedGoogle Scholar
  24. Morisawa, S, Morisawa, M 1986Acquisition of potential for sperm motility in rainbow trout and chum salmonJ. Exp. Biol1268996PubMedGoogle Scholar
  25. Oehninger, S, Coddington, C.C, Scott, R, Franken, D.A, Burkman, L.J, Acosta, A.A, Hodgen, G.D 1989Hemizona Assay: assessment of sperm dysfunction and prediction of in vitro fertilisation outcomeFertil. Steril51665670PubMedGoogle Scholar
  26. Perchec, G, Jeulin, C, Cosson, J, Andre, F, Billard, R 1995Relationship between sperm ATP content and motility of carp spermatozoaJ. Cell Sci108747753PubMedGoogle Scholar
  27. Rhemrev, J.P, Lens, J.W, McDonnell, J, Schoemaker, J, Vermeiden, J.P 2001The postwash total progressively motile sperm cell count is a reliable predictor of total fertilisation failure in vitro fertilisation treatmentFertil. Steril76884891CrossRefPubMedGoogle Scholar
  28. Rurangwa, E, Biegniewska, A, Slominska, E, Skorkowski, E.F, Ollevier, F 2002Effect of tributyltin on adenylate content and enzyme activities of teleost sperm: a biochemical approach to study the mechanism of toxicant reduced spermatozoa motilityComp. Biochem. Physiol131C335344Google Scholar
  29. Smoleñski, R.T, Lachno, D.R, Ledingham, S.J.M, Yacoub, M.H 1990Determination of sixteen nucleotides, nucleosides and bases using high-performance liquid chromatography and its application to the study of purine metabolism in hearts for transplantationJ. Chromatogr527414420PubMedGoogle Scholar
  30. Smoleñski, R.T, Składanowski, A.C, Perko, M, Z˙ydowo, M.M 1989Adenylate degradation product release from the human myocardium during open heart surgeryClin. Chim. Acta1826374CrossRefPubMedGoogle Scholar
  31. Smoleński, R.T, Suitters, A, Yacoub, M 1992Adenine nucleotide catabolism and adenosine formation in isolated human cardiomyocytesJ. Mol. Cell. Cardiol249196CrossRefPubMedGoogle Scholar
  32. Smoleński, R.T, Składanowski, A.C, Swierczynski, J, Perko, M, Narkiewicz, M, Z˙ydowo, M.M 1993Changes of nucleotide content in human and rat heart during cardiac surgery and ischemiaActa. Biochim. Polon40531538PubMedGoogle Scholar
  33. Waarde, A 1988Operation of the purine nucleotide cycle in animal tissueBiol. Rev63259298PubMedGoogle Scholar
  34. Waarde, A, Kesbeke, F 1981Regulatory properties of AMP-deaminase from lateral red muscle and dorsal white muscle of goldfish, Carassius auratusComp. Biochem. Physiol69B413423Google Scholar
  35. Volckaert, F.A.M, Galbusera, P.H.A, Hellemans, B.A.S, den Haute, C, Vanstaen, D, Ollevier, F 1994Gynogenesis in the African catfish (Clarias gariepinus): IInduction of meiogynogenesis with thermal and pressure shocks. Aquaculture128221233Google Scholar
  36. Zietara, M.S, Slominska, E, Rurangwa, E, Ollevier, F, Swierczynski, J, Skorkowski, E.F 2004In vitro adenine nucleotide catbolism in African catfish spermatozoaComp. Biochem. Physiol138B385389Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • M.S. Zietara
    • 1
  • E. Slominska
    • 2
  • J. Swierczynski
    • 2
  • E. Rurangwa
    • 3
  • F. Ollevier
    • 3
  • E.F. Skorkowski
    • 1
  1. 1.Biological Station, Laboratory of Comparative BiochemistryGdańsk UniversityGdańsk-SobieszewoPoland
  2. 2.Department of BiochemistryMedical University of GdańskGdańskPoland
  3. 3.Laboratory of Aquatic EcologyKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations