Fish Physiology and Biochemistry

, Volume 29, Issue 4, pp 255–262 | Cite as

Development of a black sea bream fibroblast cell line and its potential use as an in vitro model for stress protein studies

  • L. R. Zhou
  • E. E. Deane
  • N. Y. S. Woo


A fibroblast cell line (BSF) derived from a caudal fin explant of black sea bream (Mylio macrocephalus) was developed. The optimum fetal bovine serum (FBS) concentration for fibroblast cell line growth was found to be 15–20% v/v FBS and the optimum temperature range for growth was found to be 26–30 °C. The fibroblast cells displayed a diverse distribution in chromosome number with two modal chromosome numbers of 48 and 54. Upon acute heat shock (+8 °C) the cells displayed a 4.1 fold increase in hsp70 and this elevation was not prolonged as hsp70 returned to near basal levels following a 6 h recovery period. The effect of the hsp70 inducer L-azetidine- 2-carboxylic acid was tested and it was found that at a concentration of 10 mM this inducer caused a 2.3 fold increase in hsp70 levels. The sensitivity of the fibroblast cell line to heavy metal exposure was tested by treatment with Cu2+ and it was found that hsp70 was significantly elevated in the presence of micromolar concentrations of Cu2+. The data from this study demonstrates that the established black sea bream fibroblast cell line could serve as a useful in vitro model for stress protein studies.


fish Mylio macrocephalus fibroblast cell line hsp70 heat shock heavy metal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Airaksinen, S., Rabergh, CMI., Sistonen, L., Nikinmaa, M. 1998Effects of heat shock and hypoxia on protein synthesis in rainbow trout (Oncorhynchus mykiss) cellsJ. Exp. Biol.20125432551PubMedGoogle Scholar
  2. Alvarez, M.C., Otis, J., Amores, A., Guise, K. 1991Short-term cell culture technique for obtaining chromosomes in marine and freshwater fishJ. Fish Biol.39817824Google Scholar
  3. Bejar, J., Borrego, J.J., Alvarez, M.C. 1997A continuous cell line from the cultured marine fish gilt-head seabream (Sparus aurata L.)Aquaculture150143153CrossRefGoogle Scholar
  4. Bradford, M.M. 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem.72248254PubMedGoogle Scholar
  5. Chang, S.F., Ngoh, G.H., Kueh, L.F.S., Qin, Q.W., Chen, C.L., Lam, T., Sin, Y.M. 2001Development of a tropical marine fish cell line from Asian seabass (Lates calcarifer) for virus isolationAquaculture192133145CrossRefGoogle Scholar
  6. Chen, S.L., Sha, Z.X., Ye, H.Q. 2003Establishment of a puripotent embryonic cell line from sea perch (Lateolabrax japonicus) embryosAquaculture218141151CrossRefGoogle Scholar
  7. Chen, J.D., Yew, F.H., Li, G.C. 1988Thermal adaptation and heat shock response of tilapia ovary cellsJ. Cell. Physiol.134189199CrossRefPubMedGoogle Scholar
  8. Chi, S.C., Hu, W.W., Lo, B.J. 1999Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV)J. Fish Dis.22173182CrossRefGoogle Scholar
  9. Cho, W.J., Cha, S.J., Do, J.W., Choi, J.Y., Lee, J.Y., Jeong, C.S., Cho, K.J., Choi, W.S., Kang, H.S., Kim, H.D., Park, J.W. 1997A novel 90-kDa stress protein induced in fish cells by fish rhabdovirus infectionBiochem. Biophys. Res. Commun.233316319CrossRefPubMedGoogle Scholar
  10. Deane, E.E., Kelly, S.P., Lo, C.K.M., Woo, N.Y.S. 1999Effects of GH, prolactin and cortisol on hepatic heat shock protein 70 expression in a marine teleost Sparus sarbaJ. Endocrinol.161413421CrossRefGoogle Scholar
  11. Deane, E.E., Kelly, S.P., Chow, I.N.K., Woo, N.Y.S. 2000Effect of a prolactin pharmacological stimulant (sulpiride) and suppressant (bromocriptine) on heat shock protein 70 expression in silver sea bream, Sparus sarbaFish Physiol. Biochem.22125133CrossRefGoogle Scholar
  12. Deane, E.E., Kelly, S.P., Luk, J.C.Y., Woo, N.Y.S. 2002Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea breamMar. Biotechnol.4193205PubMedGoogle Scholar
  13. Ferrero, M., Castano, A., Gonzalez, A., Sanz, F., Becerril, C. 1998Characterization of RTG-2 fish cell line by random amplified polymorphic DNAEcotoxicol. Environ. Safety405664CrossRefPubMedGoogle Scholar
  14. Fishelson, Z., Hochman, I., Greene, L., Eisenberg, E. 2001Contribution of heat shock proteins to cell protection from complement-mediated lysisInt. Immun.13983991CrossRefPubMedGoogle Scholar
  15. Freshney, R.I. 1994Culture of animal cells: a manual of basic techniqueWiley-LissNew York93233Google Scholar
  16. Geething, M.J., Sambrook, J. 1992Protein folding in the cellNature3553345CrossRefPubMedGoogle Scholar
  17. Heikkila, J.J., Schultz, G.A., Iatrou, K., Gedamu, L. 1982Induction of a set of fish genes following heat or metal ion exposureJ. Biol. Chem.2571200012005PubMedGoogle Scholar
  18. Hightower, L.H., Renfro, J.L. 1988Recent applications of fish cell culture to biomedical researchJ. Exp. Zool.248290302PubMedGoogle Scholar
  19. Hong, Y.H., Winkler, C., Schartl, M. 1998Production of medakafish chimeras from a stable embryonic stem cell lineProc. Natl. Acad. Sci. USA9536793684CrossRefPubMedGoogle Scholar
  20. Kang, M.S., Oh, M.S., Kim, Y.I., Kawai, K., Jung, S.I. 2003Establishment and characterization of two new cell lines derived from flounder, Paralichthys olivaceus (Temmink and Shlegel) JFish. Dis.26657665CrossRefGoogle Scholar
  21. Kelly, S.P., Chow, I.N.K., Woo, N.Y.S. 1999Haloplasticity of black seabream (Mylio macrocephalus): hypersaline to freshwater acclimationJ. Exp. Zool.283226241CrossRefGoogle Scholar
  22. Kelly, S.P., Chow, I.N.K., Woo, N.Y.S. 1999Alterations in Na-K-ATPase activity and gill chloride cell morphometrics of juvenile black sea bream (Mylio macrocephalus) in response to salinity and ration sizeAquaculture172351367CrossRefGoogle Scholar
  23. Komura, J.I., Mitani, H., Shima, A. 1988Fish cell culture: establishment of two fibroblast-like cell lines (OL-17 and OL- 32) from fins of the medaka, Oryzias latipesIn Vitro Cell Dev. Biol.24294298Google Scholar
  24. Laemmli, V.K. 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature.227680683Google Scholar
  25. Lai, Y.S., Murali, S., Ju, H.Y., Wu, M.F., Guo, I.C., Chen, S.C., Fang, K., Chang, C.Y. 2000Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck and Schlegel), and partial characterization of grouper iridovirusJ. Fish Dis.23379388CrossRefGoogle Scholar
  26. Lai, Y.S., Murali, S., Chiu, H.C., Ju, H.Y., Lin, Y.S., Chen, S.C., Guo, I.C., Fang, K., Chang, C.Y. 2001Propagation of yellow grouper nervous necrosis virus (YGNNV) in a new noadvirus-susceptible cell line from yellow grouper Epinephelus awoara (Temminck and Schlegel), brain tissueJ. Fish Dis.24299309CrossRefGoogle Scholar
  27. Lai, Y.S., John, J.A.C., Lin, C.H., Guo, I.C., Chen, S.C., Fang, K., Lin, C.H., Chang, C.Y. 2003Establishment of cell lines from a tropical grouper, Epinephelus awoara (Temminck and Schlegel), and their susceptibility to grouper irido- and nodavirusesJ. Fish Dis.263142CrossRefPubMedGoogle Scholar
  28. Lannan, C.N., Winton, J.R., Fryer, J.L. 1984Fish cell lines: establishment and characterization of nine cell lines from salmonidsIn Vitro20671676PubMedGoogle Scholar
  29. Lee, , J.S., , Seo, J.S. 2002Differential expression of two stress inducible hsp70 genes by various stressorsExp. Mol. Med.34131136PubMedGoogle Scholar
  30. Ma, C.G., Fan, L.C., Ganassin, R., Bols, N., Collodi, P. 2001Production of zebrafish germ-line chimeras from embryo cell culturesProc. Natl. Acad. Sci. USA9824612466CrossRefPubMedGoogle Scholar
  31. Misra, S., Zafarullah, M., Price-Haughey, J., Gedamu, L. 1989Analysis of stress induced gene expression in fish cell lines exposed to heavy metals and heat shockBiochim. Biophys. Acta1007325333PubMedGoogle Scholar
  32. NarnawareY.K. Kelly, S.P., Woo, N.Y.S. 2000Effect of salinity and ration size on macrophage phagocytosis in juvenile black sea bream (Mylio macrocephalus)J. Appl. Ichthyol.168688CrossRefGoogle Scholar
  33. Nicholson, B.L., Danner, D.J., Wu, J.L. 1987Three new continuous cell lines from marine fishes of AsiaIn Vitro Cell. Dev. Biol.23199204Google Scholar
  34. Ossum, C.G., Hoffman, E.K., VijayanM.M. Holts, S.E., Bols, N.C. 2004Characterization of a novel fibroblast-like cell line from rainbow trout and responses to sublethal anoxiaJ. Fish Biol.6411031116CrossRefGoogle Scholar
  35. Ryan, J.A. and Hightower, L.E. 1996. Stress proteins as molecular biomarkers for environmental toxicology. In: Stress Inducible Cellular Responses pp. 411–424. Edited by U. Feige, R.I. Morimoto, I. Yahara and B. Polla. Birkhäuser Verlag, Basel. Ryan, J.A. and Hightower, L.E. 1994. Evaluation of heavy-metal ion toxicity in fish cells using a combined stress protein and cytotoxicity assay. Environ. Toxicol. Chem. 13: 1231–1240Google Scholar
  36. Tong, S.L., Li, H., Miao, H.Z. 1997The establishment and partial characterization of a continuous fish cell line FG-9307 from the gill of flounder Paralichthys olivaceusAquaculture156327333CrossRefGoogle Scholar
  37. Tong, S.L., Miao, H.Z., Li, H. 1998Three new continuous fish cell lines of SPH, SPS and RSBF derived from sea perch (Lateolabrax japonicus) and red sea bream (Pagrosomus major)Aquaculture169143151CrossRefGoogle Scholar
  38. Woo, N.Y.S., Kelly, S.P. 1995Effects of salinity and nutritional status on growth and metabolism of Sparus sarba in a closed seawater systemAquaculture135229238CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of BiologyThe Chinese University of Hong KongHong KongChina

Personalised recommendations