Skip to main content
Log in

A Review of Fundamental Combustion Phenomena in Wire Fires

  • Invited Paper
  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Electrical wires and cables have been identified as a potential source of fire in residential buildings, nuclear power plants, aircraft, and spacecraft. This work reviews the recent understandings of the fundamental combustion processes in wire fire over the last three decades. Based on experimental studies using ideal laboratory wires, physical-based theories are proposed to describe the unique wire fire phenomena. The review emphasizes the complex role of the metallic core in the ignition, flame spread, burning, and extinction of wire fire. Moreover, the influence of wire configurations and environmental conditions, such as pressure, oxygen level, and gravity, on wire-fire behaviors are discussed in detail. Finally, the challenges and problems in both the fundamental research, using laboratory wires and numerical simulations, and the applied research, using commercial cables and empirical function approaches, are thoroughly discussed to guide future wire fire research and the design of fire-safe wire and cables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Photo Credit: Miguel Medina

Figure 20

Similar content being viewed by others

Abbreviations

a :

Strain rate (s−1)

A :

Cross-section area (mm2)

B :

Mass transfer number (–)

Bo :

Bond number (–)

c:

Specific heat (kJ/kg/K)

d :

Diameter (mm)

Da :

Damkohler number (–)

E :

Activation energy (kJ/mol)

g :

Gravity acceleration (m/s2)

G :

Thermal conductance (W m/K)

Gr :

Grashof number (–)

h :

Convection coefficent (W/m2 K)

ΔH :

The heat of reaction (MJ/kg)

I :

Electrical current (A)

L :

External heating length (m)

Nu :

Nusselt number (–)

m :

Mass (g)

\(\dot{m}\) :

Mass-loss rate (kg/s)

\(\dot{m}^{{\prime \prime }}\) :

Mass loss flux (kg/m2 s)

n :

Index (–)

M dr :

Mass of one drip (mg)

N :

Number (–)

P :

Perimeter (m) or pressure (Pa)

Pe :

Peclet number (–)

\(\dot{q}^{\prime\prime}\) :

Heat flux (kW/m2)

r :

Radius of wire

R :

Universal gas constant (J/mol K)

R e :

Electrical resistance (Ω/m)

V f :

Flame-spread rate (mm/s)

t :

Time (s)

T :

Temperature (°C)

U :

Airflow speed (m/s)

W :

Flame width (m)

x :

Wire axial direction

Y :

Mass fraction (%)

Z :

Pre-exponential factor (s−1)

α :

Thermal diffusivity (m2/s)

γ:

Surface tension (Pa)

δ :

Thickness (mm)

θ :

Inclination angle (°)

ρ :

Density (kg/m3)

σ :

Surface tension (Pa)

λ :

Thermal conductivity (W/m K)

Λ :

Non-dimensional number (–)

ν :

Kinematic viscosity (m2/s)

μ :

Dynamic viscosity (Pa s)

φ :

Equivalence ratio (–)

χ :

Cable classification number (–)

χ r :

Radiative heat loss fraction (–)

* :

Critical

a :

Ambient

b :

Burning

c :

Core

cp :

Between core and insulation

dr :

Dripping

e :

Electrical

f :

Flame

F :

Fuel

g :

Gas

ig :

Ignition

J :

Joule heat

m :

Melting

o :

Outer

p :

Plastic insulation

py :

Pyrolysis

sr :

Surface reradiation

CEMAC:

CE MArking of Cables

ETFE:

Ethylene-tetrafluorpvco-ethylene

FEP:

Fluorinated ethylene propylene

FIGRA:

Fire growth rate (W/s)

HRR:

Heat release rate (kW)

LOC:

Limiting oxygen concentration (%)

NiCr:

Nickel–chromium

NPP:

Nuclear power plant

NRC:

Nuclear Regulatory Commission

PE:

Polyethylene

pHRR:

Peak heat release rate (MW)

PMMA:

Polymethyl methacrylate

PVC:

Polyvinyl chloride

SS:

Stainless steel

TGA:

Thermogravimetric analysis

THR:

Total heat release (MJ)

TI:

Thermal inertia (kJ2/m4 K2 s)

References

  1. USFA (2015) Residential building fire trends (2005–2014)

  2. Ahrens M (2016) Home structure fires. National Fire Protection Association

  3. Jia F, Patel M, Galea E et al (2006) CFD fire simulation of the Swissair flight 111 in-flight fire—part 1: prediction of the pre-fire air flow within the cockpit and surrounding areas. Aeronaut J 110:41–52. https://doi.org/10.1017/s0001924000004358

    Article  Google Scholar 

  4. Friedman R (1996) Fire safety in spacecraft. Fire Mater 20:235–243. https://doi.org/10.1002/(sici)1099-1018(199609)20:5%3c235::aid-fam580%3e3.0.co;2-y

    Article  MathSciNet  Google Scholar 

  5. Limero T, Wilson S, Perlot S, James J (1992) The role of environmental health system air quality monitors in spacestation contingency operations. SAE technical paper 921414. https://doi.org/10.4271/921414

  6. USNRC (2012) Cable heat release, ignition, and spread in tray installations during fire (CHRISTIFIRE), phase 1: horizontal trays. NUREG/CR-7010, volume 1

  7. USNRC (2008) Cable response to live fire (CAROLFIRE) volume 1: test descriptions and analysis of circuit response data. Office of Nuclear Regulatory Research NUREG/CR-6931

  8. Bakhman N, Aldabaev L, Kondrikov B, Filippov V (1981) Burning of polymeric coatings on copper wires and glass threads: I. Flame propagation velocity. Combust Flame 41:17–34. https://doi.org/10.1016/0010-2180(81)90036-5

    Article  Google Scholar 

  9. Bakhman N, Aldabaev L, Kondrikov B, Filippov V (1981) Burning of polymeric coatings on copper wires and glass threads: II. Critical conditions of burning. Combust Flame 41:35–43. https://doi.org/10.1016/0010-2180(81)90037-7

    Article  Google Scholar 

  10. Huang X (2018) Critical drip size and blue flame shedding of dripping ignition in fire. Sci Rep 8:16528. https://doi.org/10.1038/s41598-018-34620-3

    Article  Google Scholar 

  11. Tewarson A, Khan MM (1988) Flame propagation for polymers in cylindrical configuration and vertical orientation. Symp (Int) Combust 22:1231–1240. https://doi.org/10.1016/s0082-0784(89)80134-1

    Article  Google Scholar 

  12. Fernandez-Pello A., Hasegawa HK, Staggs K et al (1991) A study of the fire performance of electrical cables. Fire Saf Sci 3:237–247. https://doi.org/10.3801/iafss.fss.3-237

    Article  Google Scholar 

  13. Babrauskas V, Peacock RD, Braun E et al (1991) Fire performance of wire and cable: reaction-to-fire tests—a critical review of the existing methods and of new concepts. NIST NT 1291. https://doi.org/10.1037/014836

    Article  Google Scholar 

  14. US NRC, EPRI (2005) Fire PRA methodology for nuclear power facilities. NUREG/CR-6850

  15. Kikuchi M, Fujita O, Ito K et al (1998) Experimental study on flame spread over wire insulation in microgravity. Symp (Int) Combust 27:2507–2514. https://doi.org/10.1016/s0082-0784(98)80102-1

    Article  Google Scholar 

  16. Fujita O, Kikuchi M, Ito K, Nishizawa K (2000) Effective mechanisms to determine flame spread rate over ethylene-tetrafluoroethylene wire insulation: discussion on dilution gas effect based on temperature measurements. Proc Combust Inst 28:2905–2911. https://doi.org/10.1016/s0082-0784(00)80715-8

    Article  Google Scholar 

  17. Takahashi S, Takeuchi H, Ito H et al (2013) Study on unsteady molten insulation volume change during flame spreading over wire insulation in microgravity. Proc Combust Inst 34:2657–2664. https://doi.org/10.1016/j.proci.2012.06.158

    Article  Google Scholar 

  18. Takano Y, Fujita O, Shigeta N et al (2013) Ignition limits of short-term overloaded electric wires in microgravity. Proc Combust Inst 34:2665–2673. https://doi.org/10.1016/j.proci.2012.06.064

    Article  Google Scholar 

  19. Nakamura Y, Azumaya K, Iwakami J, Wakatsuki K (2015) Scale modeling of flame spread over PE-coated electric wires. In: Progress in scale modeling, vol II. Springer, Cham, pp 275–292

    Google Scholar 

  20. Miyamoto K, Huang X, Hashimoto N et al (2016) Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation. Fire Saf J 86:32–40. https://doi.org/10.1016/j.firesaf.2016.09.004

    Article  Google Scholar 

  21. Kobayashi Y, Huang X, Nakaya S et al (2017) Flame spread over horizontal and vertical wires: the role of dripping and core. Fire Saf J 91:112–122. https://doi.org/10.1016/j.firesaf.2017.03.047

    Article  Google Scholar 

  22. Shimizu K, Kikuchi M, Hashimoto N, Fujita O (2017) A numerical and experimental study of the ignition of insulated electric wire with long-term excess current supply under microgravity. Proc Combust Inst 36:3063–3071. https://doi.org/10.1016/j.proci.2016.06.134

    Article  Google Scholar 

  23. Kobayashi Y, Konno Y, Huang X et al (2018) Effect of insulation melting and dripping on opposed flame spread over laboratory simulated electrical wires. Fire Saf J 95:1–10. https://doi.org/10.1016/j.firesaf.2017.10.006

    Article  Google Scholar 

  24. Kobayashi Y, Konno Y, Huang X et al (2019) Laser piloted ignition of polyethylene-insulated wire in microgravity. Proc Combust Inst 37:4211–4219. http://dx.doi.org/10.1016

  25. Fujita O, Nishizawa K, Ito K (2002) Effect of low external flow on flame spread over polyethylene-insulated wire in microgravity. Proc Combust Inst 29:2545–2552. https://doi.org/10.1016/s1540-7489(02)80310-8

    Article  Google Scholar 

  26. Umemura A, Uchida M, Hirata T, Sato J (2002) Physical model analysis of flame spreading along an electrical wire in microgravity. Proc Combust Inst 29:2535–2543. https://doi.org/10.1016/s1540-7489(02)80309-1

    Article  Google Scholar 

  27. Nakamura Y, Yoshimura N, Matsumura T et al (2008) Opposed-wind effect on flame spread of electric wire in sub-atmospheric pressure. J Therm Sci Technol 3:430–441. https://doi.org/10.1299/jtst.3.430

    Article  Google Scholar 

  28. Nakamura Y, Azumaya K, Ito H, Fujita O (2009) Flame spread over electric wire in space environment: steady or unsteady? In: Kozo S, Ito A, Nakamura Y, Kuwana K (eds) Proceeding of the 27th international symposium on space technology and science. Springer, Tsukuba

  29. Nakamura Y, Yoshimura N, Ito H et al (2009) Flame spread over electric wire in sub-atmospheric pressure. Proc Combust Inst 32:2559–2566. https://doi.org/10.1016/j.proci.2008.06.146

    Article  Google Scholar 

  30. Fujita O, Kyono T, Kido Y et al (2011) Ignition of electrical wire insulation with short-term excess electric current in microgravity. Proc Combust Inst 33:2617–2623. https://doi.org/10.1016/j.proci.2010.06.123

    Article  Google Scholar 

  31. Huang X, Nakamura Y, Williams FA (2013) Ignition-to-spread transition of externally heated electrical wire. Proc Combust Inst 34:2505–2512. https://doi.org/10.1016/j.proci.2012.06.047

    Article  Google Scholar 

  32. Takahashi S, Izumo H, Ito H et al (2013) Effect of conductor on spreading flames over wire in microgravity. In: 43rd international conference on environmental systems, pp 1–7. https://doi.org/10.2514/6.2013-3388

  33. Kong W, Wang B, Zhang W et al (2008) Study on prefire phenomena of wire insulation at microgravity. Microgravity Sci Technol 20:107–113. https://doi.org/10.1007/s12217-008-9041-4

    Article  Google Scholar 

  34. Wang K, Wang BR, Ai YH, Kong WJ (2012) Study on the pre-ignition characteristics of wire insulation in the narrow channel setup. Sci China Technol Sci 55:2132–2139. https://doi.org/10.1007/s11431-012-4906-6

    Article  Google Scholar 

  35. Guan J-F, Fang J, Xue Y et al (2016) Morphology and concentration of smoke from fluorinated ethylene propylene wire insulation in microgravity under forced airflow. J Hazard Mater 320:602–611. https://doi.org/10.1016/j.jhazmat.2016.07.056

    Article  Google Scholar 

  36. He H, Zhang Q, Tu R et al (2016) Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents. J Hazard Mater 320:628–634. https://doi.org/10.1016/j.jhazmat.2016.07.070

    Article  Google Scholar 

  37. Lim SJ, Park SH, Park J et al (2017) Flame spread over inclined electrical wires with AC electric fields. Combust Flame 185:82–92. https://doi.org/10.1016/j.combustflame.2017.07.010

    Article  Google Scholar 

  38. Zhao Y, Chen J, Chen X, Lu S (2017) Pressure effect on flame spread over polyethylene-insulated copper core wire. Appl Therm Eng 123:1042–1049. https://doi.org/10.1016/j.applthermaleng.2017.05.138

    Article  Google Scholar 

  39. He H, Zhang QX, Zhao LY et al (2017) Flame propagation over energized pe-insulated wire under low pressure. Int J Comput Methods Exp Meas 5:87–95. https://doi.org/10.2495/cmem-v5-n1-87-95

    Article  Google Scholar 

  40. He H, Zhang Q, Wang X et al (2017) The influence of currents on the ignition and correlative smoke productions for PVC-insulated electrical wires. Fire Technol 53:1275–1289. https://doi.org/10.1007/s10694-016-0634-y

    Article  Google Scholar 

  41. Nagachi M, Mitsui F, Citerne JM et al (2019) Effect of ignition condition on the extinction limit for opposed flame spread over electrical wires in microgravity. Fire Technol. https://doi.org/10.1007/s10694-019-00860-6

    Article  Google Scholar 

  42. Nagachi M, Mitsui F, Citerne JM et al (2019) Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity? Proc Combust Inst 37:4155–4162. https://doi.org/10.1016/j.proci.2018.05.007

    Article  Google Scholar 

  43. Lu Y, Huang X, Hu L, Fernandez-Pello C (2019) The interaction between fuel inclination and forward wind: experimental study using thin wire. Proc Combust Inst 37:3809–3816. https://doi.org/10.1016/j.proci.2018.05.131

    Article  Google Scholar 

  44. Wang K, Wang B, Kong W, Liu F (2014) Study on the pre-ignition temperature variations of wire insulation under overload conditions in microgravity by the functional simulation method. J Fire Sci 32:257–280. https://doi.org/10.1177/0734904113511947

    Article  Google Scholar 

  45. Lim SJ, Kim M, Park J et al (2015) Flame spread over electrical wire with AC electric fields: internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping. Combust Flame 162:1167–1175. https://doi.org/10.1016/j.combustflame.2014.10.009

    Article  Google Scholar 

  46. Osorio AF, Mizutani K, Fernandez-Pello C, Fujita O (2015) Microgravity flammability limits of ETFE insulated wires exposed to external radiation. Proc Combust Inst 35:2683–2689. https://doi.org/10.1016/j.proci.2014.09.003

    Article  Google Scholar 

  47. Hu L, Zhang Y, Yoshioka K et al (2015) Flame spread over electric wire with high thermal conductivity metal core at different inclinations. Proc Combust Inst 35:2607–2614. https://doi.org/10.1016/j.proci.2014.05.059

    Article  Google Scholar 

  48. Citerne J-MM, Dutilleul H, Kizawa K et al (2016) Fire safety in space—investigating flame spread interaction over wires. Acta Astronaut 126:500–509. https://doi.org/10.1016/j.actaastro.2015.12.021

    Article  Google Scholar 

  49. Hu L, Lu Y, Yoshioka K et al (2017) Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity. Proc Combust Inst 36:3045–3053. https://doi.org/10.1016/j.proci.2016.09.021

    Article  Google Scholar 

  50. Wang X, He H, Zhao L et al (2016) Ignition and flame propagation of externally heated electrical wires with electric currents. Fire Technol 52:533–546. https://doi.org/10.1007/s10694-015-0515-9

    Article  Google Scholar 

  51. Wang K, Xia W, Wang B et al (2016) Study on fire initiation of wire insulation by a narrow channel at low pressure. Microgravity Sci Technol 28:155–163. https://doi.org/10.1007/s12217-016-9494-9

    Article  Google Scholar 

  52. Gong T, Xie Q, Huang X (2018) Fire behaviors of flame-retardant cables part I: decomposition, swelling and spontaneous ignition. Fire Saf J 95:113–121. https://doi.org/10.1016/j.firesaf.2017.10.005

    Article  Google Scholar 

  53. Fisher RP, Stoliarov SI, Keller MR (2015) A criterion for thermally-induced failure of electrical cable. Fire Saf J 72:33–39. https://doi.org/10.1016/j.firesaf.2015.02.002

    Article  Google Scholar 

  54. Meinier R, Sonnier R, Zavaleta P et al (2018) Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J Hazard Mater 342:306–316. https://doi.org/10.1016/j.jhazmat.2017.08.027

    Article  Google Scholar 

  55. Courty L, Garo JP (2017) External heating of electrical cables and auto-ignition investigation. J Hazard Mater 321:528–536. https://doi.org/10.1016/j.jhazmat.2016.09.042

    Article  Google Scholar 

  56. Fang J, Xue Y, Huang X et al (2019) Dripping and fire extinction limits of thin wire: effect of pressure and oxygen. Combust Sci Technol. https://doi.org/10.1080/00102202.2019.1658578

    Article  Google Scholar 

  57. Hirschler MM (2001) Can the cone calorimeter be used to predict full scale heat and smoke release cable tray results from a full scale test protocol? In: Proceeding of the Interflam. Interscience Communications, London

  58. Khan MM, Bill RG, Alpert RL (2006) Screening of plenum cables using a small-scale fire test protocol. Fire Mater 30:65–76. https://doi.org/10.1002/fam.899

    Article  Google Scholar 

  59. Simulates burning cables running on trays under ceiling. https://gft.eu/en/our-products/gft-firextrainer-burner-modules-for-professional-use/gft-cabletrayfire/

  60. Huang X (2012) Ignition and spread of electrical wire fires. University of California, San Diego

    Google Scholar 

  61. Payce A (2016) Loose wires cause fires. https://www.youtube.com/watch?v=nPhgQpRFe5A

  62. Fire damage caused by loose wiring connection. http://www.electriciansblog.co.uk/wp-content/uploads/2014/10/Mains-Cut-Out-Fire-Damage.jpg

  63. (2016) Fire of shock electricity cable. https://www.youtube.com/watch?v=-Z0RMFB4H2c

  64. Drysdale D (2011) An introduction to fire dynamics, 3rd ed. Wiley, Chichester

    Book  Google Scholar 

  65. Harper C (2003) Handbook of building materials for fire protection. McGraw-Hill Education, New York

  66. Tewarson A (2004) Flammability of polymers. In: Plastics and the environment. Wiley, Hoboken, pp 403–489

    Chapter  Google Scholar 

  67. Incropera FP (2007) Fundamentals of heat and mass transfer. Wiley, Hoboken

  68. Delichatsios MA (1996) Creeping flame spread: energy balance and application to practical materials. Symp (Int) Combust 26:1495–1503. https://doi.org/10.1016/s0082-0784(96)80371-7

    Article  Google Scholar 

  69. Delichatsios MA (2000) Ignition times for thermally thick and intermediate conditions in flat and cylindrical geometries. Fire Saf Sci 6:233–244. https://doi.org/10.3801/iafss.fss.6-233

    Article  Google Scholar 

  70. Delichatsios MA, Altenkirch RA, Bundy MF et al (2000) Creeping flame spread along fuel cylinders in forced and natural flows and microgravity. Proc Combust Inst 28:2835–2842. https://doi.org/10.1016/s0082-0784(00)80706-7

    Article  Google Scholar 

  71. Finney MA, Cohen JD, Forthofer JM et al (2015) Role of buoyant flame dynamics in wildfire spread. Proc Natl Acad Sci 112:9833–8. https://doi.org/10.1073/pnas.1504498112

    Article  Google Scholar 

  72. Salva JJ, Juste GL Gravitational effects on flame spreading over thin cylindrical fuel samples. Microgravity Sci Technol 4:191–198

  73. Delichatsios MA (2000) Flame heat fluxes and correlations of upward flame spread along vertical cylinders in various oxygen environments. Proc Combust Inst 28:2899–2904. https://doi.org/10.1016/s0082-0784(00)80714-6

    Article  Google Scholar 

  74. Lin S, Huang X, Urban J et al (2019) Piloted ignition of cylindrical widlland fuels under irradiation. Front Mech Eng 5:54. https://doi.org/10.3389/fmech.2019.00054

    Article  Google Scholar 

  75. Atreya A (1998) Ignition of fires. Phil Trans R Soc Lond A 356:2787–2813. https://doi.org/10.1098/rsta.1998.0298

    Article  Google Scholar 

  76. Quintiere JG (2006) Fundamental of fire phenomena. Wiley, New York

    Book  Google Scholar 

  77. Fernandez-Pello C (1994) The solid phase. In: Cox G (ed) Combustion fundamentals of fire. Academic Press, New York, pp 31–100

    Google Scholar 

  78. Leung CH, Staggs JEJ, Brindley J et al (2000) The effects of an inert central core on the thermal pyrolysis of an electrical cable. 34:143–168. https://doi.org/10.1016/s0379-7112(99)00055-7

    Article  Google Scholar 

  79. Glassman I, Dryer FL (1981) Flame spreading across liquid fuels. Fire Saf J 3:123–138. https://doi.org/10.1016/0379-7112(81)90038-2

    Article  Google Scholar 

  80. Murad RJ, Lamendola J, Isoda H, Summerfield M (1970) A study of some factors influencing the ignition of a liquid fuel pool. Combust Flame 15:289–298. https://doi.org/10.1016/0010-2180(70)90008-8

    Article  Google Scholar 

  81. Williams FA (1977) Mechanisms of fire spread. Symp (Int) Combust 16:1281–1294. https://doi.org/10.1016/s0082-0784(77)80415-3

    Article  Google Scholar 

  82. Mendelson RA (1965) Polyethylene melt viscosity: shear rate-temperature superposition. Trans Soc Rheol 9:53–63. https://doi.org/10.1122/1.549006

    Article  Google Scholar 

  83. Wu C, Huang X, Wang S et al (2019) Opposed-flow flame spread over cylindrical fuel under oxygen-enriched microgravity environment. Fire Technol. https://doi.org/10.1007/s10694-019-00896-8

    Article  Google Scholar 

  84. Lu Y, Huang X, Hu L, Fernandez-Pello C (2018) Concurrent flame spread and blow-off over horizontal thin electrical wires. Fire Technol 55:193–209. https://doi.org/10.1007/s10694-018-0785-0

    Article  Google Scholar 

  85. Huang X, Kim W Il, He W et al (2018) Effect of external and internal heating on electrical wire fire. In: 11th Asia-Oceania symposium on fire science and technology

  86. Kim Y, Hossain A, Nakamura Y (2013) Numerical study of effect of thermocapillary convection on melting process of phase change material subjected to local heating. J Therm Sci Technol 8:136–151. https://doi.org/10.1299/jtst.8.136

    Article  Google Scholar 

  87. Kim Y, Hossain A, Nakamura Y (2015) Numerical modeling of melting and dripping process of polymeric material subjected to moving heat flux: prediction of drop time. Proc Combust Inst 35:2555–2562. https://doi.org/10.1016/j.proci.2014.05.068

    Article  Google Scholar 

  88. Kim Y, Hossain A, Nakamura Y (2013) Numerical study of melting of a phase change material (PCM) enhanced by deformation of a liquid–gas interface. Int J Heat Mass Transf 63:101–112. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.052

    Article  Google Scholar 

  89. Kempel F, Schartel B, Marti JM et al (2015) Modelling the vertical UL 94 test: competition and collaboration between melt dripping, gasification and combustion. Fire Mater 39:570–584. https://doi.org/10.1002/fam.2257

    Article  Google Scholar 

  90. Williams FA (1981) A review of flame extinction. Fire Saf J 3:163–175. https://doi.org/10.1016/0379-7112(81)90041-2

    Article  Google Scholar 

  91. Lyons KM (2007) Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog Energy Combust Sci 33:211–231. https://doi.org/10.1016/j.pecs.2006.11.001

    Article  Google Scholar 

  92. Olson SL, Ferkul P V. (2017) Microgravity flammability boundary for PMMA rods in axial stagnation flow: experimental results and energy balance analyses. Combust Flame 180:217–229. https://doi.org/10.1016/j.combustflame.2017.03.001

    Article  Google Scholar 

  93. Takahashi S, Ito H, Nakamura Y, Fujita O (2013) Extinction limits of spreading flames over wires in microgravity. Combust Flame 160:1900–1902. https://doi.org/10.1016/j.combustflame.2013.03.029

    Article  Google Scholar 

  94. Johnston MC, T’Ien JS, Muff DE et al (2015) Self induced buoyant blow off in upward flame spread on thin solid fuels. Fire Saf J 71:279–286

    Article  Google Scholar 

  95. Link S, Huang X, Fernandez-Pello C et al (2018) The effect of gravity on flame spread over PMMA cylinders. Sci Rep 8:120. https://doi.org/10.1038/s41598-017-18398-4

    Article  Google Scholar 

  96. Gollner MJ, Huang X, Cobian J et al (2013) Experimental study of upward flame spread of an inclined fuel surface. Proc Combust Inst 34:2531–2538. https://doi.org/10.1016/j.proci.2012.06.063

    Article  Google Scholar 

  97. Du J, Tu R, Zeng Y et al (2017) An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires. PLoS ONE 12:1–14

    Article  Google Scholar 

  98. Park SH, Lim SJ, Cha MS et al (2019) Effect of AC electric field on flame spread in electrical wire: variation in polyethylene insulation thickness and di-electrophoresis phenomenon. Combust Flame 202:107–118. https://doi.org/10.1016/j.combustflame.2019.01.007

    Article  Google Scholar 

  99. Liu Y, Urban JL, Xu C, Fernandez-Pello C (2019) Temperature and motion tracking of metal spark sprays. Fire Technol. https://doi.org/10.1007/s10694-019-00847-3

    Article  Google Scholar 

  100. (2015) Electrical wires sparking (slow motion). https://www.youtube.com/watch?v=7JOgdpQbC8k

  101. Zhang Y, Fang J, Wang J (2019) Ignition and flame spread over thermal aging electrical wires in subatmospheric pressure. https://doi.org/10.1177/0892705719866868

    Article  Google Scholar 

  102. Wang Z, Wei R, Ouyang D, Wang J (2019) Investigation on thermal stability and flame spread behavior of new and aged fine electrical wires. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08778-5

    Article  Google Scholar 

  103. Rein G (2014) Smoldering combustion. SFPE Handb Protect Eng 2014:581–603. https://doi.org/10.1007/978-1-4939-2565-0_19

    Article  Google Scholar 

  104. Hirschler MM, Grand AF (1993) Comparison of the smoke toxicity of four vinyl wire and cable compounds using different test methods. Fire Mater 17:79–90. https://doi.org/10.1002/fam.810170205

    Article  Google Scholar 

  105. Mizutani K, Miyamoto K, Hashimoto N et al (2018) Limiting oxygen concentration trend of ETFE-insulated wires under microgravity. Int J Microgravity Sci Appl 35:350104. https://doi.org/10.15011//jasma.35.350104

    Article  Google Scholar 

  106. Kashiwagi T, Ohlemiller TJ, Werner K (1987) Effects of external radiant flux and ambient oxygen concentration on nonflaming gasification rates and evolved products of white pine. Combust Flame 69:331–345. https://doi.org/10.1016/0010-2180(87)90125-8

    Article  Google Scholar 

  107. Konno Y, Hashimoto N, Fujita O (2019) Downward flame spreading over electric wire under various oxygen concentrations. Proc Combust Inst 37:3817–3824. https://doi.org/10.1016/j.proci.2018.05.074

    Article  Google Scholar 

  108. Ramachandra PA, Altenkirch RA, Tang LIN et al (1995) The behavior of flames spreading over thin solids in microgravity. Combust Flame 2180:71–84

    Article  Google Scholar 

  109. McAlevy RF, Magee RS (1969) The mechanism of flame spreading over the surface of igniting condensed-phase materials. Symp (Int) Combust 12:215–227. https://doi.org/10.1016/s0082-0784(69)80405-4

    Article  Google Scholar 

  110. Altenkirch RA, Eichhorn R, Shang PC (1980) Buoyancy effects on flames spreading down thermally thin fuels. Combust Flame 37:71–83. https://doi.org/10.1016/0010-2180(80)90072-3

    Article  Google Scholar 

  111. Zarzecki M, Quintiere JG, Lyon RE et al (2013) The effect of pressure and oxygen concentration on the combustion of PMMA. Combust Flame 160:1519–1530. https://doi.org/10.1016/j.combustflame.2013.02.019

    Article  Google Scholar 

  112. Huang X, Link S, Rodriguez A et al (2019) Transition from opposed flame spread to fuel regression and blow off : effect of flow, atmosphere, and microgravity. Proc Combust Inst 37:4117–4126. https://doi.org/10.1016/j.proci.2018.06.022

    Article  Google Scholar 

  113. Fujita O (2015) Solid combustion research in microgravity as a basis of fire safety in space. Proc Combust Inst 35:2487–2502. https://doi.org/10.1016/j.proci.2014.08.010

    Article  Google Scholar 

  114. Yamashita M, Ishikawa Y, Kitaya Y et al (2006) An overview of challenges in modeling heat and mass transfer for living on Mars. Ann N Y Acad Sci 1077:232–43. https://doi.org/10.1196/annals.1362.012

    Article  Google Scholar 

  115. Gallucci RH V (2017) Statistical characterization of cable electrical failure temperatures due to fire for nuclear power plant risk applications. Fire Technol 53:401–412. https://doi.org/10.1007/s10694-016-0616-0

    Article  Google Scholar 

  116. Journeaux T, Försth M, Messa S et al (2010) CEMAC—CE-MArking of cables. SP rapport NV-2010:27

  117. Girardin B, Fontaine G, Duquesne S, Bourbigot S (2016) Fire tests at reduced scale as powerful tool to fasten the development of flame-retarded material: application to cables. J Fire Sci 34:240–264. https://doi.org/10.1177/0734904116642618

    Article  Google Scholar 

  118. Huang X, Zhu H, Peng L et al (2019) Thermal characteristics of vertically spreading cable fires in confined compartments. Fire Technol. https://doi.org/10.1007/s10694-019-00833-9

    Article  Google Scholar 

  119. van Hees P, Thureson P (1996) Burning behavior of cables—modelling of flame spread. Brandforsk project 725-942, SP report 1996:30

  120. Keski-rahkonen O, Mangs J (1999) Ignition of and fire spread on cables and electronic components. Vtt Publications 387

  121. William Coaker A, Hirschler MM, Shoemaker C (1992) Rate of heat release testing for vinyl wire and cable materials with reduced flammability and smoke-full-scale cable tray tests and small-scale tests. Fire Saf J 19:19–53. https://doi.org/10.1016/0379-7112(92)90004-v

    Article  Google Scholar 

  122. Delichatsios MA, Delichatsios MM (1994) Upward flame spread and critical conditions for PE/PVC cables in a tray configuration. Fire Saf Sci 4:433–444

    Article  Google Scholar 

  123. Van Hees P, Axelsson J, Maret V, Piechaczyk A (2007) Development of conetools for the Euroclasses of cables. Interflam 2007

  124. Stein AB, Sparrow EM, Gorman JM (2012) Numerical simulation of cables in widespread use in the nuclear power industry subjected to fire. Fire Saf J 53:28–34. https://doi.org/10.1016/j.firesaf.2012.06.004

    Article  Google Scholar 

  125. Guibaud A, Consalvi JL, Orlac'h JM, Citerne JM, Legros G (2019) Soot production and radiative heat transfer in opposed flame spread over a polyethylene insulated wire in microgravity. Fire Technol. https://doi.org/10.1007/s10694-019-00850-8

  126. ASTM (2011) Standard test method for using a cone calorimeter to determine fire-test-response characteristics of insulating materials contained in electrical or optical fiber cables. ASTM D6113-11. https://doi.org/10.1520/d6113-10.2

  127. Nakagawa Y (1998) A comparative study of bench-scale flammability properties of electric cables with different covering materials. J Fire Sci 16:179–205. https://doi.org/10.1177/073490419801600304

    Article  Google Scholar 

Download references

Acknowledgements

XH thanks the support from National Natural Science Foundation of China (NSFC) No. 51876183. YN thanks the support from Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) # 21681022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Nakamura, Y. A Review of Fundamental Combustion Phenomena in Wire Fires. Fire Technol 56, 315–360 (2020). https://doi.org/10.1007/s10694-019-00918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-019-00918-5

Keywords

Navigation