Skip to main content
Log in

Aerosol Forming Compositions for Fire Fighting Applications: A Review

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Aerosol forming compositions (AFCs) have come up as one of the most efficient fire extinguishing Halon alternative since the implementation of Montreal protocol-1987 on ozone layer depleting substances. These aerosol based systems have gained much attention in recent years because of higher fire extinguishing efficiencies, modular nature, non pressurized container, less maintenance requirement, extended shelf-life and negligible ODP, GWP and ALT values. Aerosols are traditionally produced using pyrotechnique compositions having mostly metal salts of group IA or IIA. Potassium nitrate has been used predominantly as oxidizing agent (40–75%, w/w), whereas for electric and electronics systems, strontium nitrate (15–70%, w/w) has been recommended. Versatile reducing agent, binders, gas forming agents, burn rate modifiers and many such functional additives have been used recently for preparations of AFCs. AFCs indicated variable burn rate values, 2–7 mm/s. AFCs were found highly efficient with minimum fire extinguishing concentrations mostly ranging between 30 g/m3 and 200 g/m3. Moreover, the development of highly efficient, non-corrosive, non-toxic and environmentally benign AFC is still an elusive goal. This review mainly focuses on advances of aerosol forming chemical compositions, its future prospects and potential research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AFCS :

Aerosol forming compositions

CAFES:

Condensed aerosol based fire extinguishing system

ALT:

Atmospheric life time

DCDA:

Dicyandiamide

GWP:

Global warming potential

HMTA:

Hexamethylenetetramine

ISO:

International Organization for Standardization

MMAD:

Mass median aerodynamic diameter

ODP:

Ozone depletion potential

PFR:

Phenolformaldehyde resin

PTFE:

Polytetrafluoroethylene

US EPA:

Unites States Environmental Protection Agency

References

  1. Kim Y, Kwon K (2012) An efficient methodology for evaluating the nozzle performance of water-based automatic fire extinguishers. Korean J Chem Eng 29:908–912. https://doi.org/10.1007/s11814-011-0276-1

    Article  Google Scholar 

  2. Kuznetsov G V., Piskunov M V., Strizhak PA (2017) How to improve efficiency of using water when extinguishing fires through the explosive breakup of drops in a flame: laboratory and field tests. Int J Therm Sci 121:398–409. https://doi.org/10.1016/j.ijthermalsci.2017.08.004

    Article  Google Scholar 

  3. Sheinson R, Eaton H, Black B (1993) Total flooding fire suppressant testing in a 56 m3 (2000 ft3) compartment In: Halon alternatives technical working conference, Pro., Albuquerque, NM, 137:11–13

  4. Us FL, Hamilton DM, Fort EG, Springs T (2005) Inert gas suppression system for temperature control. Patent US9814917B2

  5. Marlair G, Simonson M, Gann R (2004) Interflam’99 proceedings of the 10th Interflam conference, Edinburgh, 325

  6. Web link: https://www.scribd.com/document/394977007/Pyroleaflet-pdf

  7. Jansen S, Sr. VP of Sales at Fireaway (2011) Aerosol fire suppression technology. Fire Saf

  8. Zhang X, Ismail MHS, Ahmadun FRB, et al. (2015) Hot aerosol fire extinguishing agents and the associated technologies: a review. Braz J Chem Eng 32:707–724. https://doi.org/10.1590/0104-6632.20150323s00003510

    Article  Google Scholar 

  9. Hughes, W. Options to the Use of Halons for Aircraft Fire Suppression Systems (2012) Update, DOT/FAA/AR-11/31 Federal Aviation Administration. Technical Center Aviation Research Division, Atlantic City International Airport New Jersey 08405

  10. Kwon K, Kim Y (2013) Extinction effectiveness of pyrogenic condensed-aerosols extinguishing system. Korean J Chem Eng 30:2254–2258. https://doi.org/10.1007/s11814-013-0203-8

    Article  Google Scholar 

  11. Agafonov VV, Kopylov SN, Sychev AV (2004) The mechanism of fire suppression by condensed aerosols. In: The Halon options technical working conferences, Proceedings, 15th, Albuquerque, NM, 1–10

  12. Williams BA, Fleming JW (1999) Suppression mechanisms of alkaline metal compounds. In: The Halon options technical working conferences, Albuquerque, NM

  13. Zhao Y, Zhang J, Jia L (2004) Aerosol fire-extinguishing agent. Tianjin Chem Indus18(2):7

    Google Scholar 

  14. Ji T, Wei T (2013) Fire extinguishing composition of copper salts. Patent No 2013023576 A1

  15. Shimizu, T. Fireworks (1981) The art, science and technique. T. Shimizu, Tokyo

    Google Scholar 

  16. Rusin D, Denisyuk A, Michalev D, Shepelev J (2004) Pyrotechnical aerosol-forming fire-extinguishing composite and a method of its production. Patent US 6689285B2

  17. Denisyuk A (2003) Pyrotechnical aerosol forming fire extinguishing composite and a method of its production. Patent EU134158 A2

  18. Conkling J, Mocella C (2013) Chemistry of pyrotechnics: basic principles and theory, 2nd ed, Marcel Dekker, INC, New York, ISBN: 13:978-1574447408

  19. Griffiths T, Charsley E, Rumsey J (1982) International pyrotechnics seminar, Proceedings, 8th., IIT Research Institute, Chicago, 83

  20. Griffiths T, Charsley E, Hider J (1988) International pyrotechnics seminar, Proc., 13th., IIT Research Institute, Chicago, 393

  21. Charsley E, Hider J, Barton T, Griffiths T (1982) Journal of Thermal Analysis, Wiley, Heyden, 2:1440

  22. Emmot P, Griffiths T, Queay J, Charsley E, Warrington S (1991) In: Proceedings of 17th international pyrotechnics seminar, Beijing Institute of Technology Press, Beijing, 25

  23. Tichapondwa SM, Focke WW, Del Fabbro O, Labuschagne G (2016) The effect of additives on the burning rate of silicon–calcium sulfate pyrotechnic delay compositions. Propellants Explos Pyrotech 41:732–739. doi: https://doi.org/10.1002/prep.201500243

    Article  Google Scholar 

  24. Zhang S, Shan J, Zhu Y, et al (2013) Restructuring transition metal oxide nanorods for 100% selectivity in reduction of nitric oxide with carbon monoxide. Nano Lett 13:3310–3314. https://doi.org/10.1021/nl4015292

    Article  Google Scholar 

  25. Hasue K, Iwama A, Kazumi T (1991) Combustion aspects of sodium azide and its mixtures with potassium perchlorate and burning catalysts. Propellants Explos Pyrotech 16:245-252. https://doi.org/10.1002/prep.19910160509

    Article  Google Scholar 

  26. Beck M, Brown M (1986) Modification of the burning rate of antimony/potassium permanganate pyrotechnic delay compositions. Comb Flame 66(1):67–75. https://doi.org/10.1016/0010-2180(86)90033-7

    Article  Google Scholar 

  27. Rugunanan AA, Brown ME (1993) Combustion of binary and ternary silicon/oxidant pyrotechnic systems, part ii: binary systems with Sb2O3 and KNO3 as oxidants. Combust Sci Technol 95:85–99. https://doi.org/10.1080/00102209408935328

    Article  Google Scholar 

  28. Guo H, Zheng G, Zhang W (2015) New age resistant aerosol propellant and preparing process thereof. Patent EU 2481449B1

  29. Specht M, Meiler K (2015) Fire prevention or fire extinguishing in an electrochemical energy storage system. Patent US 2015/0017491A1

  30. Kozyrev V, Yemelyanov V, Sidorov A, Andreev V (1998) Aerosol-forming composition for the purpose of extinguishing fires. Patent US5831209A

  31. Sergienko A, Onjanov O (2000) Extinguishing agent for extinguishing fires comprises potassium nitrate or potassium perchlorate, hydrogen-soluble fuel, and combustion rate regulator. Patent DE 19915352A1

  32. Drakin N.V (2000) Method and apparatus for extinguishing fires. Patent US 6089326 A

  33. Drakin N (2000) Method and apparatus for fire extinguishing. Patent US 6116348

  34. Drakin N (2000) Pyrotechnical aerosol-forming composition for extinguishing fires and process for its preparation. Patent EU 0976424 B1

    Google Scholar 

  35. Scheffee R, Neidert J, Black R, Lynch R, Martin J (2001) Fire suppressant compositions. Patent US 6277296B1

  36. Belyakov V, Golubev A, Govorov K, Korobenina T, Krauklish I, Kuznetsov R, Milekhin J, Militsyn J.A, Pak Z, Perepechenko B, Rusanov V, Sokolnikov A, Soloviev V (1997) Method of extinguishing a fire and a fire-extinguishing system. Patent EU 0925808B1

  37. Mikhailov Y, Korostelev V, Aldoshin S (2004) Aerosol generation pyrotechnic composition for systems performing volumetric fire-extinguishing, Patent RU 2230726C2

  38. Zeliff Z, Loveless L, Kutsel V (2010) Doronichev, A. Low temperature flameless aerosol producing fire extinguishing composition and production method thereof. Patent US 20100294975A1

  39. Kosyrev V, Emeljanov V, Sidorov A, Andreev V (1998) An aerosol forming agent for extinguishing fires and processes for its production. Patent DE 19634006 C2

    Google Scholar 

  40. Yonghua H (2011) Steam hot aerosol fire extinguishing composition and its use method and fire extinguishing device. Patent CN101554520B

  41. Bo Z, Hongbao G, Xiaolin W, Wei H (2001) To produce a highly effective extinguishing aerosol composition. Patent CN 1288766A

  42. Jiguo H, Yuanyang Z, Hongbao G (2011) Extinguishment combination with hot gas sol. Patent CN101376049B

  43. Belyakov V, Rusanov V, Govorov K, Golubev A, Soloviev V, Kuznetsov R,, Krauklish I, Perepetchenko B, Militsyn Y, Milekhin Y, Korobenina (1997) Composition for fire extinguish. Patent RU2095104

  44. Agafonov D, Doronichev A, Mikhailova M, Nikolaev S, Politova A, Zhegrov E (1999) Fire extinguishing aerosol forming means. Patent EU1109601 B1

  45. Stepanov A, Kamensky A, Starkova A, Alikin V, Fedchenko N, Kuzmitsky G (1999) Aerosol-forming fire extinguishing composition. Patent RU 99125225/12

  46. Guo H, Zhang Z (2010) Fire extinguishing aerosol composition for heavy current electric apparatuses. Patent US 2010/0179259A1

  47. Ma J, Liu XR, Jin HJ, et al (2011) An improved strontium-based aerosol fire extinguishing agent with potassium additives. In: International conference on Chem Eng Adv Mater CEAM 2011, May 28, 2011–May 30, 2011 239–242:2479–2483. https://doi.org/10.4028/www.scientific.net/AMR.239-242.2479

    Article  Google Scholar 

  48. Agafonov VV, Kopylov NP, Kopylov SN (2006) The effectiveness of condensed aerosols for fire suppression in electrical equipment, Halon Options Technical Working Conference, 15th Proceedings. HOTWC

  49. Yongchang S, Qingqing, Gang Z, Bin C (2006) Aerosol fire extinguishing agent. Patent CN 1739820A

  50. Guo H, Zhang Z (2013) Fire extinguishing aerosol for common electric appliance. Patent EU 2168638B1

  51. Guo H, Zhang Z (2012) Fire extinguishing aerosol composition for precision electric appliances. Patent US8231801B2

  52. Baratov A, Myshak I, Spector Y, Jacobson E (1995) Fire extinguishing methods and systems. Patent US5423385 A

  53. Guo H, Liu H (2013) Ferrocene-based fire extinguishing composition. Patent US20130221264A1

  54. Ji T, Wei T, Tian W, Liu S (2017) Metallic oxy salt fire extinguishing composition. Patent US9662523B2

  55. Wei T, Ji T, Liu S (2017) Fire extinguishing composition containing transition metal compound. Patent US9717939B2

  56. Wu H, Zhai T, Zheng G, Lei Z, Yang Z (2017) Fire extinguishing composition comprising heterocyclic compounds. Patent US20170043196A1

  57. Kosanke KL, Kosanke BJ (1997) Pyrotechnic ignition and propagation: a review. J Pyrotech 6:17–19

    MATH  Google Scholar 

  58. Kibert CJ, Dierdorf D (1994) Solid particulate aerosol fire suppressants. Fire Technol 30:387–399. https://doi.org/10.1007/bf01039940

    Article  Google Scholar 

  59. Zhu C, Wang J, Xie W, et al (2015) Improving strontium nitrate-based extinguishing aerosol by magnesium powder. Fire Technol 51:97–107. https://doi.org/10.1007/s10694-013-0361-6

    Article  Google Scholar 

  60. Kopylov SN, Koltsov SA, Nikonova E V, Uglov VA (2003) An application of gas-aerosol tools for fire protection of sea oil-producing platforms

  61. Jimoda L (2012) Effects of particulate matter on human health, the ecosystem, climate and materials: a review. Ser Work Liv Environ Prot 9(1): 27

    Google Scholar 

  62. Zhang J, Tan Z, Meng S, Li S, Zhang L (1997) Heat capacity and thermal decomposition of dicyandiamide. Thermo Acta 307(1): 11-15

    Article  Google Scholar 

  63. Kopylov S, Agafonov V, Kopylov N, Uglov V, Sychev A, Zhyganov D, Nikonova EV The modification of the characteristics of the condensed fire extinguishing aerosol during its distribution through the pipelines, All-Russian scientific research institute for fire protection, Vniipo 12, balashikha district, Moscow region, 143903 Russia. https://www.nist.gov/sites/default/files/documents/el/fire_research/R0401187.pdf

Download references

Acknowledgement

Authors are thankful to Director CFEES, Delhi for his valuable guidance and permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Saxena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohilla, M., Saxena, A., Dixit, P.K. et al. Aerosol Forming Compositions for Fire Fighting Applications: A Review. Fire Technol 55, 2515–2545 (2019). https://doi.org/10.1007/s10694-019-00843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-019-00843-7

Keywords

Navigation