Fire Technology

, Volume 53, Issue 4, pp 1555–1568 | Cite as

The Wind Effect on the Transport and Burning of Firebrands

  • Jiayun Song
  • Xinyan Huang
  • Naian Liu
  • Han Li
  • Linhe Zhang


Firebrands, controlling spot fires, are often responsible for fast damages in wildland and urban fires. However, the behaviours of firebrands are difficult to predict. In this study, we conduct experiments in a wind tunnel to investigate the effect of wind on the smouldering burning and transport of firebrands. Three different sizes of disc wood particles (weighing about 1 g) are heated to generate smouldering firebrands, and then blown out by a horizontal wind of 5 or 7 m/s. In each experiment the transport distance (in the order of 1 m) and mass loss of firebrands are measured to examine their burning behaviours. For the first time, a bimodal distribution (burning and extinction modals) is observed for small firebrands under certain wind speeds (firebrands of 12-mm diameter and 5-mm thickness under a wind speed of 7 m/s in this work). Both the firebrand transport distance and mass loss in the extinction modal are smaller than those in the burning modal. The heat transfer analysis shows that there is a critical wind speed to quench the firebrand and produce a bimodal distribution, and its value increases with both the particle size and the heating duration. The predicted critical wind speed agrees well with experimental measurements.


Spot fire Smouldering Extinction Bimodal distribution Critical wind speed 



This research is funded by the National Natural Science Foundation of China (Nos. 51625602 and 51476156) and the National Key Research and Development Plan (No. 2016YFC0800100). This work was also supported by the Fundamental Research Funds for the Central Universities (Nos. WK2320000033 and WK2320000036).


  1. 1.
    Johnson EA, Miyanishi K (2001) Forest fires: behavior and ecological effects. Elsevier Science, AmsterdamGoogle Scholar
  2. 2.
    Mell WE, Manzello SL, Maranghides A, Butry D, Rehm RG (2010) The wildland–urban interface fire problem—current approaches and research needs. Int J Wildland Fire 19(2):238–251. doi: 10.1071/WF07131 CrossRefGoogle Scholar
  3. 3.
    Koo E, Linn RR, Pagni PJ, Edminster CB (2012) Modelling firebrand transport in wildfires using HIGRAD/FIRETEC. Int J Wildland Fire 21(4):396–417. doi: 10.1071/WF09146 CrossRefGoogle Scholar
  4. 4.
    Williams FA (1982) Urban and wildland fire phenomenology. Prog Energy Combust Sci 8(4):317–354. doi: 10.1016/0360-1285(82)90004-1 CrossRefGoogle Scholar
  5. 5.
    Albini FA, Forest I (1979) Spot fire distance from burning trees: a predictive model. Intermountain forest and range experiment station. Forest Service, US Department of Agriculture, Ogden, Utah, USAGoogle Scholar
  6. 6.
    Ellis PFM (2013) Firebrand characteristics of the stringy bark of messmate (Eucalyptus obliqua) investigated using non-tethered samples. Int J Wildland Fire 22(5):642–651. doi: 10.1071/WF12141 CrossRefGoogle Scholar
  7. 7.
    Pagni PJ (1993) Causes of the 20 October 1991 Oakland hills conflagration. Fire Saf J 21(4):331–339. doi: 10.1016/0379-7112(93)90020-Q CrossRefGoogle Scholar
  8. 8.
    Caton SE, Hakes RSP, Gorham DJ, Zhou A, Gollner MJ (2016) Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technol. doi: 10.1007/s10694-016-0589-z Google Scholar
  9. 9.
    Hakes RSP, Caton SE, Gorham DJ, Gollner MJ (2016) A review of pathways for building fire spread in the wildland urban interface part ii: response of components and systems and mitigation strategies in the United States. Fire Technol. doi: 10.1007/s10694-016-0601-7 Google Scholar
  10. 10.
    Tarifa CS, Notario P, Moreno FG (1965) On the flight paths and lifetimes of burning particles of wood. In: Symposium (international) on combustion, vol 10. Elsevier, pp 1021–1037. doi:  10.1016/S0082-0784(65)80244-2
  11. 11.
    Tarifa C, Del Notario P, Moreno F, Villa A (1967) Transport and combustion of firebrands, final report of grants FG-SP-11 and FG-SP-146. US Department of Agriculture Forest Service, Madrid, SpainGoogle Scholar
  12. 12.
    Lee S-L, Hellman J (1969) Study of firebrand trajectories in a turbulent swirling natural convection plume. Combust Flame 13(6):645–655. doi: 10.1016/0010-2180(69)90072-8 CrossRefGoogle Scholar
  13. 13.
    Albini FA (1983) Transport of firebrands by line thermals. Combust Sci Technol 32(5–6):277–288. doi: 10.1080/00102208308923662 CrossRefGoogle Scholar
  14. 14.
    Woycheese J, Pagni P (1999) Combustion models for wooden brands. In: Proceedings 3rd international conference on fire research and engineering. Society of fire protection engineers, Washington, USA, 1999. p 53Google Scholar
  15. 15.
    Himoto K, Tanaka T (2005) Transport of disk-shaped firebrands in a turbulent boundary layer. In: The eighth international symposium on fire safety science, pp 18–23Google Scholar
  16. 16.
    Manzello SL, Maranghides A, Mell WE (2007) Firebrand generation from burning vegetation. Int J Wildland Fire 16(4):458–462. doi: 10.1071/WF06079 CrossRefGoogle Scholar
  17. 17.
    Manzello SL, Maranghides A, Shields JR, Mell WE, Hayashi Y, Nii D (2009) Mass and size distribution of firebrands generated from burning Korean pine (Pinus koraiensis) trees. Fire Mater 33(1):21–31. doi: 10.1002/fam.977 CrossRefGoogle Scholar
  18. 18.
    Manzello SL, Shields JR, Cleary TG, Maranghides A, Mell WE, Yang JC, Hayashi Y, Nii D, Kurita T (2008) On the development and characterization of a firebrand generator. Fire Saf J 43(4):258–268. doi: 10.1016/j.firesaf.2007.10.001 CrossRefGoogle Scholar
  19. 19.
    Zhou K, Suzuki S, Manzello SL (2015) Experimental study of firebrand transport. Fire Technol 51(4):785–799. doi: 10.1007/s10694-014-0411-8 CrossRefGoogle Scholar
  20. 20.
    Manzello SL, Suzuki S (2013) Experimentally simulating wind driven firebrand showers in Wildland-Urban Interface (WUI) fires: overview of the NIST firebrand generator (NIST dragon) technology. Procedia Eng 62:91–102. doi: 10.1016/j.proeng.2013.08.047 CrossRefGoogle Scholar
  21. 21.
    Tse SD, Fernandez-Pello AC (1998) On the flight paths of metal particles and embers generated by power lines in high winds—a potential source of wildland fires. Fire Saf J 30(4):333–356. doi: 10.1016/S0379-7112(97)00050-7 CrossRefGoogle Scholar
  22. 22.
    Anthenien RA, Tse SD, Carlos Fernandez-Pello A (2006) On the trajectories of embers initially elevated or lofted by small scale ground fire plumes in high winds. Fire Saf J 41(5):349–363. doi: 10.1016/j.firesaf.2006.01.005 CrossRefGoogle Scholar
  23. 23.
    Sardoy N, Consalvi J-L, Porterie B, Fernandez-Pello AC (2007) Modeling transport and combustion of firebrands from burning trees. Combust Flame 150(3):151–169. doi: 10.1016/j.combustflame.2007.04.008 CrossRefGoogle Scholar
  24. 24.
    Sardoy N, Consalvi J, Kaiss A, Fernandez-Pello A, Porterie B (2008) Numerical study of ground-level distribution of firebrands generated by line fires. Combust Flame 154(3):478–488. doi: 10.1016/j.combustflame.2008.05.006 CrossRefGoogle Scholar
  25. 25.
    Ellis P (2010) The effect of aerodynamic behaviour of flakes of jarrah and karri bark on their potential behaviour as firebrands. J R Soc West Aust 93:21–27Google Scholar
  26. 26.
    Knight I, Ellis P, Sullivan A (2001) The CSIRO vertical wind tunnel. CSIRO forestry and forest products, technical reportGoogle Scholar
  27. 27.
    Knight I (2001) The design and construction of a vertical wind tunnel for the study of untethered firebrands in flight. Fire Technol 37(1):87–100. doi: 10.1023/A:1011605719943 CrossRefGoogle Scholar
  28. 28.
    Tohidi A, Bridges W (2015) Statistical description of firebrand size and shape distribution from coniferous trees for use in Metropolis Monte Carlo simulations of firebrand flight distance. Fire Saf J 77:21–35. doi: 10.1016/j.firesaf.2015.07.008 CrossRefGoogle Scholar
  29. 29.
    Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildland Fire 19(7):818–843. doi: 10.1071/WF07119 CrossRefGoogle Scholar
  30. 30.
    Houssami EM, Mueller E, Filkov A, Thomas JC, Skowronski N, Gallagher MR, Clark K, Kremens R, Simeoni A (2016) Experimental procedures characterising firebrand generation in wildland fires. Fire Technology 52(3):731–751. doi: 10.1007/s10694-015-0492-z CrossRefGoogle Scholar
  31. 31.
    Cheney NP, Gould JS, Catchpole WR (1998) Prediction of fire spread in grasslands. Int J Wildland Fire 8(1):1–13. doi: 10.1071/WF9980001 CrossRefGoogle Scholar
  32. 32.
    Andrews PL, Cruz MG, Rothermel RC (2013) Examination of the wind speed limit function in the Rothermel surface fire spread model. Int J Wildland Fire 22(7):959–969. doi: 10.1071/WF12122 CrossRefGoogle Scholar
  33. 33.
    Beer T (1996) Environmental oceanography. CRC marine science. Taylor & Francis, RoutledgeGoogle Scholar
  34. 34.
    Englund F, Nussbaum RM (2000) Monoterpenes in scots pine and Norway spruce and their emission during kiln drying. Holzforschung 54(5):449–456. doi: 10.1515/HF.2000.075 CrossRefGoogle Scholar
  35. 35.
    Samuelsson R, Nilsson C, Burvall J (2006) Sampling and GC-MS as a method for analysis of volatile organic compounds (VOC) emitted during oven drying of biomass materials. Biomass Bioenergy 30(11):923–928. doi: 10.1016/j.biombioe.2006.06.003 CrossRefGoogle Scholar
  36. 36.
    Song J, Wang S, Chen H (2014) Safety distance for preventing hot particle ignition of building insulation materials. Theor Appl Mech Lett 4(3):034005. doi: 10.1063/2.1403405 CrossRefGoogle Scholar
  37. 37.
    Bergman TL, Incropera FP (2011) Introduction to heat transfer. Wiley, HobokenGoogle Scholar
  38. 38.
    Su Y, Luo Y, Wu W, Zhang Y, Zhao S (2012) Characteristics of pine wood oxidative pyrolysis: degradation behavior, carbon oxide production and heat properties. J Anal Appl Pyrolysis 98:137–143. doi: 10.1016/j.jaap.2012.07.005 CrossRefGoogle Scholar
  39. 39.
    Bergman TL, Incropera FP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley, HobokenGoogle Scholar
  40. 40.
    Di Blasi C (1994) Processes of flames spreading over the surface of charring fuels: effects of the solid thickness. Combust Flame 97(2):225–239. doi: 10.1016/0010-2180(94)90006-X CrossRefGoogle Scholar
  41. 41.
    Grishin AM (1997) Mathematical modeling of forest fires and new methods of fighting them. Publishing House of the Tomsk state university, Siberia, RussiaGoogle Scholar
  42. 42.
    Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, HobokenCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jiayun Song
    • 1
  • Xinyan Huang
    • 2
  • Naian Liu
    • 1
  • Han Li
    • 1
  • Linhe Zhang
    • 1
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations