Skip to main content
Log in

Semi-empirical Model for Fire Spread in Shrubs with Spatially-Defined Fuel Elements and Flames

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

A semi-empirical model was developed which forms shrub geometries from distinct fuel elements (e.g. leaves) and describes flame spread from element to element. Ignition, flame growth and flame decay patterns were based on combustion data of single leaves. Extension of the model to various heating conditions was achieved by scaling the flame growth parameters using physics-based heat transfer models. The resulting model offers a novel approach to examine fire spread and to explicitly describe both distinct fuel elements and fire behavior. This approach balances computational speed and modeling detail while providing a unique perspective into fire spread phenomena. Comparisons of the tuned model to fire spread behavior measured in an open-roofed wind tunnel benchmarked the model’s ability to simulate fire spread in manzanita shrubs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor

\( A_{{{\text{c}},{\text{local}}}} \) :

Cross-sectional area normal to the flame axis affected by heat release

\( A_{c} \) :

Cross-sectional area

\( A_{face} \) :

Two-sided face area of a leaf

B :

Experimentally determined flame merging constant

\( c_{{w_{1} }} \) :

Concentration of water at location 1

\( c_{{w_{2} }} \) :

Concentration of water at location 2

\( c_{p,dry} \) :

Specific heat of dry leaf mass

\( c_{p,gas} \) :

Specific heat of passing gases

\( c_{p,water} \) :

Specific heat of water

\( c_{p} \) :

Specific heat

\( d_{f} \) :

Downward flame extension (below leaf)

\( {\mathcal{D}}_{S} \) :

Drying diffusivity of water in wood

E :

Activation energy

g :

Gravitational constant

\( h_{1} \) :

Flame height of a solitary flame

\( h_{f} \) :

Flame height of a leaf

\( h_{f,group} \) :

Collective flame height of a group of flames

\( h_{f,max} \) :

Maximum flame height

\( h_{f,max,0} \) :

Maximum flame height at base conditions (same value as \( h_{f,max} \))

\( h_{f,max,F} \) :

Maximum flame height at fire spread scenario

\( \bar{h}_{L} \) :

Average heat convection coefficient for length L

k :

Thermal conductivity

l :

Leaf length

\( L_{1} \) :

Flame length of a solitary flame

\( L_{f} \) :

Merged flame length for some flame configuration

\( L_{m} \) :

Fully-merged flame length (no separation between flames)

\( m_{0,w} \) :

Initial mass of water

\( m_{dry} \) :

Oven-dry mass

\( m_{water} \) :

Mass of water remaining in a leaf

MC :

Moisture content (oven-dried basis)

\( n_{fuels} \) :

Number of fuel elements (i.e. leaves)

N :

Number of flames

\( N^{*} \) :

Number of flames meeting meeting distance criterion for merging

\( \overline{Nu}_{L} \) :

Average Nusselt number over length L

Pr :

Prandtl number

\( q_{conv} \) :

Convective heat transfer (units of power)

\( q_{evap} \) :

Heat of vaporization of water (units of power)

\( q_{rad} \) :

Radiation heat transfer (units of power)

\( r_{f} \) :

Flame radius

R :

Universal gas constant

\( R_{T} \) :

Thermal flux ratio

\( Re_{L} \) :

Reynolds number

S :

Separation distance (gap width) between flames

\( \hat{S} \) :

Normalized separation between flames in three dimensions

\( t_{bo} \) :

Burnout time (from start of heating)

\( t_{burn} \) :

Shrub burn time (from first ignition to last extinction)

\( t_{end,0} \) :

End time determined by physics-based model for base condition

\( t_{end,F} \) :

End time determined by physics-based model for fire spread scenario

\( t_{h} \) :

Time of maximum flame height (from start of heating)

\( t_{ig} \) :

Time of ignition (from start of heating)

\( t_{x,0} \) :

Flame times (e.g. t ig or t h ) at base condition, where x indicates ig, h, or bo

\( t_{x,F} \) :

Flame times at fire spread scenario

T :

Temperature

\( T_{amb} \) :

Ambient temperature (i.e. far away from fire activity)

\( T_{conv} \) :

Bulk convective gas temperature

\( T_{leaf} \) :

Leaf temperature

\( T_{local} \) :

Convective gas temperature near the leaf (considers volatile combustion)

\( T_{soot} \) :

Radiation temperature of soot

\( T_{surr} \) :

Radiation temperature of surroundings

U :

Wind speed local to a leaf

\( U_{bulk} \) :

Bulk wind speed

\( v \) :

Convective gas velocity at the leaf surface

\( \bar{v}_{U,\theta } \) :

Mean component of wind speed in the flame axis direction

\( \bar{v}_{z,\theta } \) :

Mean component of buoyant velocity in the flame axis direction

V :

Fraction of initial mass released as volatiles

\( V_{\infty } \) :

Ultimate yield of volatiles as fraction of initial mass

\( w \) :

Leaf width

W :

Fraction of initial mass released as water

\( X_{s} \) :

Shrub conversion, or amount burned

\( \alpha \) :

Thermal diffusivity, or parameter in beta distribution

\( \beta \) :

Parameter in beta distribution

\( \Delta F_{0} \) :

Fractional change in dry mass of base case

\( \Delta F_{F} \) :

Fractional change in dry mass of new fire condition

\( \Delta H_{comb} \) :

Heat of combustion

\( \Delta m_{dry,i} \) :

Change in dry mass over time step \( \Delta t \) of component i

\( \Delta m_{dry} \) :

Change in dry mass over time step \( \Delta t \)

\( \Delta m_{water} \) :

Mass released of water during \( \Delta t \)

\( \Delta x \) :

Leaf thickness

\( \Delta t \) :

Time step

\( \Delta z_{{f,{ \hbox{max} }}} \) :

Maximum flame height above shrub

ε :

Emissivity

γ :

Specific gravity

κ :

Flame opacity

Λ :

Experimentally determined flame merging constant

φ h :

Physics-based scaling factor for flame height

ρ :

Density

ρ conv :

Density of convective gases

σ :

Boltzmann constant

θ :

Flame tilt angle (from vertical)

θ T :

Convection coefficient correction factor for blowing

υ :

Kinematic viscosity

0:

Refers to an initial state, base case, or reference value

c :

Refers to the cross-section

dry :

Specifies an oven-dried quantity or a dry-matter component

f :

Refers to a flame

F :

Refers to a fire scenario case

m :

Indicates that flames are fully-merged

max :

Indicates a maximum value

w :

Refers to moisture (or water) component

References

  1. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research Paper INT-115. USDA Forest Service, Intermountain Forest and Range Experiment Station Ogden, Utah, USA

  2. Frandsen WH (1973) Effective heating of fuel ahead of spreading fire (trans: Station IFaRE). Research Paper INT-140. USDA Forest Service, Ogden, UT

  3. Andrews PL (2007) BehavePLUS fire modeling system: past, present, and future. In: Proceedings of the 7th symposium on fire and forest meteorology, Bar Harbor, Maine

  4. Andrews PL (2008) BehavePlus fire modeling system, version 4.0: Variable (trans: Station RMR). USDA Forest Service, Fort Collins

  5. Burgan RE, Rothermel RC (1984) BEHAVE: fire behavior prediction and fuel modeling system—FUEL subsystem. PMS 439-1 NFES 0275. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station

  6. Finney MA (1998) FARSITE: fire area simulator—model development and evaluation. Research Paper 0502-5001. USDA Forest Service Rocky Mountain Forest and Range Experiment Station, Ogden, UT

  7. Finney MA (2002) Fire growth using minimum travel time methods. Can J Forest Res 32 (8):1420–1424. doi:10.1139/X02-068

    Article  MathSciNet  Google Scholar 

  8. Finney MA, Grenfell IC, McHugh CW, Seli RC, Trethewey D, Stratton RD, Brittain S (2011) A method for ensemble wildland fire simulation. Environ Model Assess 16(2):153–167. doi:10.1007/s10666-010-9241-3

    Article  Google Scholar 

  9. Linn R, Reisner J, Colman JJ, Winterkamp J (2002) Studying wildfire behavior using FIRETEC. Int J Wildland Fire 11 (3–4):233–246. doi:10.1071/Wf02007

    Article  Google Scholar 

  10. Clark MM (2008) Development and evaluation of a sub-grid combustion model for a landscape scale for 3-D wildland fire simulator. BYU, Provo

    Google Scholar 

  11. Morvan D, Dupuy JL (2001) Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust Flame 127 (1–2):1981–1994

    Article  Google Scholar 

  12. Mell WE, Manzello SL, Maranghides A (2006) Numerical modeling of fire spread through trees and shrubs. In: Viegas DX (ed) V international conference on forest fire research, Coimbra

    Google Scholar 

  13. Zhou XY, Mahalingam S, Weise D (2007) Experimental study and large eddy simulation of effect of terrain slope on marginal burning in shrub fuel beds. Proc Combust Inst 31:2547–2555. doi:10.1016/j.proci.2006.07.222

    Article  Google Scholar 

  14. Finney MA, Cohen JD, Grenfell IC, Yedinak KM (2010) An examination of fire spread thresholds in discontinuous fuel beds. Int J Wildland Fire 19 (2):163–170. doi:10.1071/WF07177

    Article  Google Scholar 

  15. Tang W, Miller CH, Gollner MJ (2016) Local flame attachment and heat fluxes in wind-driven line fires. Proc Combust Inst. doi:10.1016/j.proci.2016.06.064

  16. Finney MA, Cohen JD, Forthofer JM, McAllister SS, Gollner MJ, Gorham DJ, Saito K, Akafuah NK, Adam BA, English JD (2015) Role of buoyant flame dynamics in wildfire spread. Proc Natl Acad Sci 112 (32):9833–9838. doi:10.1073/pnas.1504498112

    Article  Google Scholar 

  17. Fons WL (1946) Analysis of fire spread in light forest fuels. J Agric Res 72 (13):93–121

    Google Scholar 

  18. Pickett BM (2008) Effects of moisture on combustion of live wildland forest fuels. Ph.D., Brigham Young University, Provo

  19. Cole WJ, Dennis MH, Fletcher TH, Weise DR (2011) The effects of wind on the flame characteristics of individual leaves. Int J Wildland Fire 02:657–667. doi:10.1071/WF10019

    Article  Google Scholar 

  20. Engstrom JD, Butler JK, Smith SG, Baxter LL, Fletcher TH, Weise DR (2004) Ignition behavior of live California chaparral leaves. Combust Sci Technol 176:1577–1591

    Article  Google Scholar 

  21. Fletcher TH, Pickett BM, Smith SG, Spittle GS, Woodhouse MM, Haake E, Weise DR (2007) Effects of moisture on ignition behavior of moist California chaparral and Utah leaves. Combust Sci Technol 179:1183–1203

    Article  Google Scholar 

  22. Weise DR, Zhou X, Sun L, Mahalingam S (2005) Fire spread in chaparral—”go or no-go?”. Int J Wildland Fire 14 (1):99–106

    Article  Google Scholar 

  23. Pickett BM, Isackson C, Wunder R, Fletcher TH, Butler BW, Weise DR (2010) Experimental measurements during combustion of moist individual foliage samples. Int J Wildland Fire 19:1–10

    Article  Google Scholar 

  24. Lozano JS (2011) An investigation of surface and crown fire dynamics in shrub fuels. PhD Dissertation, University of California, Riverside

  25. Smith SG (2005) Effects of moisture on combustion characteristics of live California chaparral and Utah foliage. M.S. Thesis, Brigham Young University, Provo

  26. Shen C, Fletcher TH (2015) Fuel element combustion properties for live Wildland Utah Shrubs. Combust Sci Technol 187:428–444

    Article  Google Scholar 

  27. Cole WJ, Pickett BM, Fletcher TH, Weise DR (2009) A semi-empirical multi-leaf model for fire spread through a manzanita shrub. In: 6th U.S. National Combustion Meeting, Ann Arbor, Michigan, May 18–20 2009

  28. Shen C (2013) Application of fuel element combustion properties to a semi-empirical flame propagation model for live wildland Utah Shrubs. M.S. Thesis, Brigham Young University, Provo

  29. Gallacher JR (2016) The influence of season, heating mode and slope angle on wildland fire behavior. PhD Dissertation, Brigham Young University, Provo

  30. Prince DR, Fletcher ME, Shen C, Fletcher TH (2014) Application of L-systems to geometrical construction of chamise and juniper shrubs. Ecol Model 273:86–95. doi:10.1016/j.ecolmodel.2013.11.001

    Article  Google Scholar 

  31. Albini FA (1976) Estimating wildfire behavior and effects. General Technical Report INT-30. USDA Forest Service, Ogden

  32. Prince DR (2014) Measurement and modeling of fire behavior in leaves and sparse shrubs. PhD Dissertation, Brigham Young University, Provo

  33. Fletcher TH, Pickett BM, Smith SG, Spittle GS, Woodhouse MM, Haake E, Weise DR (2007) Effects of moisture on ignition behavior of moist California chaparral and Utah leaves. Combust Sci Technol 179 (6):1183–1203. doi:10.1080/00102200601015574

    Article  Google Scholar 

  34. Shen C, Fletcher TH (2015) Fuel element combustion properties for live wildland Utah Shrubs. Combust Sci Technol 187(3):428–444. doi:10.1080/00102202.2014.950372

    Article  Google Scholar 

  35. Cole WJ, Dennis MH, Fletcher TH, Weise DR (2011) The effects of wind on the flame characteristics of individual leaves. Int J Wildland Fire 20:657–667. doi:10.1071/WF10019

    Article  Google Scholar 

  36. Albini FA (1981) A model for the wind-blown flame from a line fire. Combust Flame 43:155–174

    Article  Google Scholar 

  37. Fletcher TH, Pond HR, Webster J, Wooters J, Baxter LL (2012) Prediction of tar and light gas during pyrolysis of black liquor and biomass. Energ Fuel 26 (6):3381–3387. doi:10.1021/Ef300574n

    Article  Google Scholar 

  38. Badzioch S, Hawksley PG (1970) Kinetics of thermal decomposition of pulverized coal particles. Ind Eng Chem Proc Dd 9 (4):521–530. doi:10.1021/I260036a005

    Article  Google Scholar 

  39. Stamm AJ (1964) Wood and cellulose science. Ronald Press Co., New York

    Google Scholar 

  40. Plumb OA, Spolek GA, Olmstead BA (1985) Heat and mass transfer in wood during drying. Int J Heat Mass Tran 28 (9):1669–1678

    Article  Google Scholar 

  41. Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. J. Wiley, New York

    Google Scholar 

  42. Jenkins BM, Baxter LL, Miles TR, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54 (1–3):17–46. doi:10.1016/S0378-3820(97)00059-3

    Article  Google Scholar 

  43. McCaffrey BJ (1979) Purely buoyant diffusion flames: some experimental results (trans: Center for Fire Research NEL). National Bureau of Standards, Washington

    Book  Google Scholar 

  44. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley International J. Wiley, New York

    Google Scholar 

  45. Lopez A, Molina-Aiz FD, Valera DL, Pena A (2012) Determining the emissivity of the leaves of nine horticultural crops by means of infrared thermography. Sci Hortic-Amsterdam 137:49–58. doi:10.1016/j.scienta.2012.01.022

    Article  Google Scholar 

  46. Sun L, Zhou X, Mahalingam S, Weise DR (2006) Comparison of burning characteristics of live and dead chaparral fuels. Combust Flame 144 (1–2):349–359

    Article  Google Scholar 

  47. Steward FR (1970) Prediction of height of turbulent diffusion buoyant flames. Combust Sci Technol 2 (4):203-212. doi:10.1080/00102207008952248

    Article  Google Scholar 

  48. Weng WG, Kamikawa D, Fukuda Y, Hasemi Y, Kagiya K (2004) Study on flame height of merged flame from multiple fire sources. Combust Sci Technol 176 (12):2105–2123. doi:10.1080/00102200490514949

    Article  Google Scholar 

  49. Liu N, Liu Q, Lozano JS, Shu L, Zhang L, Zhu J, Deng Z, Satoh K (2009) Global burning rate of square fire arrays: experimental correlation and interpretation. Proc Combust Inst 32 (2):2519–2526. doi:10.1016/j.proci.2008.06.086

    Article  Google Scholar 

  50. Lozano J, Tachajapong W, Weise DR, Mahalingam S, Princevac M (2010) Fluid dynamic structures in a fire environment observed in laboratory-scale experiments. Combust Sci Technol 182(7):858–878

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JFSP contracts 11-JV-11272167-044 and 11-JV-11272167-054 and NSF Grant CBET-093842. Any opinions, findings, and conclusions or recommendations expressed in this dissertation are those of the graduate student and advisor and do not necessarily reflect the views of the National Science Foundation or any other government funding agency. Neither the NSF nor any other agency has approved or endorsed the content in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Fletcher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prince, D., Shen, C. & Fletcher, T. Semi-empirical Model for Fire Spread in Shrubs with Spatially-Defined Fuel Elements and Flames. Fire Technol 53, 1439–1469 (2017). https://doi.org/10.1007/s10694-016-0644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-016-0644-9

Keywords

Navigation