Fire Technology

, Volume 53, Issue 3, pp 1309–1331 | Cite as

A Quantitative Infrared Imaging System for In Situ Characterization of Composite Materials in Fire Tests

  • Sergio Sánchez-Carballido
  • Celeste Justo-María
  • Juan Meléndez
  • Fernando López
Article

Abstract

A novel non-intrusive measurement system based on quantitative infrared imaging has been designed and developed specifically for the study of composite plates submitted to fire. The system consists of two synchronized infrared cameras that image both sides of the sample during a fire test, providing surface temperature maps spatially corregistered. Flame effects on measured temperature are minimized through selection of a spectral band with near negligible infrared absorption-emission (wavelength centre 9585 nm, full width at half maximum 135 nm), as well as software post-processing. An ad hoc experiment has shown that this procedure retrieves surface temperatures with an uncertainty of \(\pm 5\) K, compared to a systematic error larger than 60 K for a classic thermographic measurement. Surface emissivities of both sides of the sample are measured and included in the retrieval procedure. By adding a flash lamp, the system implements an adaptation of the classical Parker’s flash method to thermally thick samples, providing also a map of thermal diffusivities along the sample both before and after the burning. In the region most degraded by fire, the effective thermal diffusivity is reduced approximately one order of magnitude as compared to the pre-test value (from 5.9 × 10−7 m2 s−1 to 0.5 × 10−7 m2 s−1). Several composite samples have been analysed while exposed to fire in different conditions, showing that thermal diffusivity after the burning shows a strong correlation with the local maximum temperature reached during the test. More precisely, in the temperature range between \(\sim \)325 and 350\(^{\circ }\)C a drastic change in diffusivity seems to takes place, in a way that suggest a phase change.

Keywords

Infrared imaging Thermography Fire Thermal properties Composite 

References

  1. 1.
    Chung D (2010) Composite materials: science and applications, Springer, New York. doi: 10.1007/978-1-84882-831-5 CrossRefGoogle Scholar
  2. 2.
    Gibson AG, Mouritz AP (2006) Fire properties of polymer composite materials. Springer, New York. doi: 10.1007/978-1-4020-5356-6 Google Scholar
  3. 3.
    Mouritz A, Feih S, Kandare E, Mathys Z, Gibson A, Jardin PD, Case S, Lattimer B (2009) Review of fire structural modelling of polymer composites. Composites A 40(12): 1800. doi: 10.1016/j.compositesa.2009.09.001 CrossRefGoogle Scholar
  4. 4.
    Lattimer BJ, Oullette J, Trelles J (2011) Measuring properties for material decomposing modeling. Fire Mater 35(1):11. doi: 10.1002/fam.1031 CrossRefGoogle Scholar
  5. 5.
    Branca C, Blasi CD, Galgano A, Milella E (2011) Thermal and kinetic characterization of a toughened epoxy resin reinforced with carbon fibers. Thermochim Acta 517(1–2):53. doi: 10.1016/j.tca.2011.01.034 CrossRefGoogle Scholar
  6. 6.
    Dao DQ, Rogaume T, Luche J, Richard F, Valencia LB, Ruban S (2014) Thermal degradation of epoxy resin/carbon fiber composites: influence of carbon fiber fraction on the fire reaction properties and on the gaseous species release: thermal degradation of epoxy resin/carbon fiber composites. Fire Mater. doi: 10.1002/fam.2265 Google Scholar
  7. 7.
    Henderson JB, Wiebelt JA, Tant JA (1985) A model for the thermal response of polymer composite materials with experimental verification. J Compos Mater 19(6):579. doi: 10.1177/002199838501900608 CrossRefGoogle Scholar
  8. 8.
    Dodds N, Gibson A, Dewhurst D, Davies J (2000) Fire behaviour of composite laminates. Composites A 31(7):689 (2000). doi: 10.1016/S1359-835X(00)00015-4 CrossRefGoogle Scholar
  9. 9.
    Miano VU (2011) Modelling composite fire behaviour using apparent thermal diffusivity. Ph.D. thesis, Newcastle University, Newcastle upon TyneGoogle Scholar
  10. 10.
    Gibson AG, Browne T, Feih S, Mouritz A (2012) Modeling of one-dimensional thermal response of silica-phenolic composites with volume ablation. J Compos Mater 46(16):2005. doi: 10.1177/0021998311429383 CrossRefGoogle Scholar
  11. 11.
    Tranchard P,  Samyn F, Duquesne S, Thomas M, Estebe B, Montes J, Bourbigot S (2015) Fire behaviour of carbon fibre epoxy composite for aircraft: Novel test bench and experimental study. J Fire Sci 33(3):247. doi: 10.1177/0734904115584093 CrossRefGoogle Scholar
  12. 12.
    Meléndez J, Foronda A, Aranda JM, López F, López del Cerro FL (2007) Infrared thermography of solid surfaces in a fire. Meas Sci Technol 21(10):105504. doi: 10.1088/0957-0233/21/10/105504 CrossRefGoogle Scholar
  13. 13.
    Babrauskas V (1995) Designing products for fire performance: the state of the art of test methods and fire models.Fire Saf J 24(3):299CrossRefGoogle Scholar
  14. 14.
    Sorathia U, Divisjón C, Lyon R (1997) A review of fire test methods and criteria for C os. SAMPE J 33(4):23Google Scholar
  15. 15.
    ISO (1998) Iso2685:1998. Aircraft environmental test procedure for airborne equipment. Resistance to fire in designated fire zones. doi: 10.3403/30320830u
  16. 16.
    FAA (2003) Far25.856(b):2003. Title 14 code of federal—test methods to determine the burnthrough rresistance of thermal/acoustic insulation materials (Appendix f, part vii)Google Scholar
  17. 17.
  18. 18.
    Parker W, Jenkins R, Butter C, Abbot GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity . J Appl Phys 32:1679CrossRefGoogle Scholar
  19. 19.
    Sánchez-Carballido S, Justo-María C, Meléndez J, López F, López del Cerro FJ (2013) Experimental determination of the thermal parameters of carbon fiber-composite materials exposed to fire by infrared imaging pulse thermography. Int J Thermophys 34(8−9):1606. doi: 10.1007/s10765-013-1521-0 CrossRefGoogle Scholar
  20. 20.
    Baba T, Ono A (2001) Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Meas Sci Technol 12(12):2046. doi: 10.1088/0957-0233/12/12/304 CrossRefGoogle Scholar
  21. 21.
    Krankenhagen R, Maierhofer C (2014) Measurement of the radiative energy output of flash lamps by means of thermal thin probes. Infrared Phys Technol 67:363. doi: 10.1016/j.infrared.2014.07.012. http://linkinghub.elsevier.com/retrieve/pii/S1350449514001364
  22. 22.
    Hibbard R, Liebert C (1970) Spectral emittance of soot. NASA Technical NotesGoogle Scholar
  23. 23.
    Dimitrienko Y (1997) Thermomechanical behaviour of composite materials and structures under high temperatures. Composites A 28(5):453. doi: 10.1016/S1359-835X(96)00144-3 CrossRefGoogle Scholar
  24. 24.
    Stern S, Dierdorf D (2005) Thermogravimetric analysis (TGA) of various epoxy composite formulations. Technique Reports, DTIC DocumentGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sergio Sánchez-Carballido
    • 1
  • Celeste Justo-María
    • 1
  • Juan Meléndez
    • 1
  • Fernando López
    • 1
  1. 1.Department of PhysicsUniversidad Carlos III de MadridLeganesSpain

Personalised recommendations