Fire Technology

, Volume 53, Issue 3, pp 1291–1308 | Cite as

Permeability Comparison of Natural and Artificial Pinus Radiata Forest Litters

  • Sebastian Fehrmann
  • Wolfram Jahn
  • Juan de Dios Rivera


Forest litter flammability metrics have been extensively studied under laboratory conditions, but little research has been conducted in quantifying the difference between artificially reconstructed litters and natural litters. In order to assess the fire spread behaviour of natural litter beds, a sampling method was designed to obtain almost unperturbed radiata pine litters. As permeability is expected to affect flammability, this property was used for comparison between natural and artificially reconstructed litters. The pressure drop of airflow through undisturbed litter samples was measured in the vertical and horizontal direction for different flow velocities. The permeability of the specimens was obtained by fitting experimental values to the Forchheimer equation. It was found that for natural litter samples the horizontal permeability is almost unaffected by bulk density, while the vertical permeability is a decaying linear function of bulk density. It was further found that the permeability of artificially reconstructed litter samples depends exponentially on the bulk density of the sample. Surface to volume ratio, density and porosity of both types of litter are also informed, and qualitative comparison between them is given. Surface to volume ratio as well as density and porosity were notably different between natural and reconstructed litters.


Litter flammability Litter sampling Permeability Fuel bed Forest fire Fire spread velocity Radiata pine 


  1. 1.
    Cheney N (1990) Quantifying bushfires. Math Comput Model 13(12): 9–15CrossRefGoogle Scholar
  2. 2.
    Catchpole W, Catchpole E, Butler B, Rothermel RC, Morris GA, Latham DJ (1998) Rate of spread of free-burning fires in woody fuels in a wind tunnel. Combust Sci Technol 131(1–6): 1–37 . doi: 10.1080/00102209808935753 CrossRefGoogle Scholar
  3. 3.
    Valdivieso JP, Rivera JDD (2013) Effect of wind on smoldering combustion limits of moist pine needle beds. Fire Technol 50(6): 1589–1605. doi: 10.1007/s10694-013-0357-2 CrossRefGoogle Scholar
  4. 4.
    Ohlemiller TJ (1990) Smoldering combustion propagation through a permeable horizontal fuel layer. Combust Flame 81(3–4): 341–353 . doi: 10.1016/0010-2180(90)90030-U CrossRefGoogle Scholar
  5. 5.
    Drysdale D (2011) An introduction to fire dynamics, 3rd edn. Wiley, New York. ISBN 0-470-31903-1Google Scholar
  6. 6.
    Bartoli P, Simeoni A, Biteau H, Torero J, Santoni P (2011) Determination of the main parameters influencing forest fuel combustion dynamics. Fire Saf J 46(1–2): 27–33 . doi: 10.1016/j.firesaf.2010.05.002 CrossRefGoogle Scholar
  7. 7.
    Fernandez-Pello AC, Lautenberger C, Rich D, Zak C, Urban J, Hadden R, Scott S, Fereres S (2014) Spot fire ignition of natural fuel beds by hot metal particles, embers, and sparks. Combust Sci Technol 187(1–2): 269–295 . doi: 10.1080/00102202.2014.973953 Google Scholar
  8. 8.
    Manzello SL, Cleary TG, Shields JR, Yang JC (2006) On the ignition of fuel beds by firebrands. Fire Mater 30(1): 77–87. doi: 10.1002/fam.901 CrossRefGoogle Scholar
  9. 9.
    Mindykowski P, Fuentes A, Consalvi J, Porterie B (2011) Piloted ignition of wildland fuels. Fire Saf J 46(1–2): 34–40 . doi: 10.1016/j.firesaf.2010.09.003 CrossRefGoogle Scholar
  10. 10.
    Schemel CF, Simeoni A, Biteau H, Rivera JD, Torero JL (2008) A calorimetric study of wildland fuels. Exp Therm Fluid Sci 32(7): 1381–1389 . doi: 10.1016/j.expthermflusci.2007.11.011 CrossRefGoogle Scholar
  11. 11.
    Viegas DX, Almeida M, Raposo J, Oliveira R, Viegas CX (2012) Ignition of mediterranean fuel beds by several types of firebrands. Fire Technol 50(1): 61–77 . doi: 10.1007/s10694-012-0267-8 CrossRefGoogle Scholar
  12. 12.
    Yin P, Liu N, Chen H, Lozano JS, Shan Y (2012) New correlation between ignition time and moisture content for pine needles attacked by firebrands. Fire Technol 50(1): 79–91 . doi: 10.1007/s10694-012-0272-y CrossRefGoogle Scholar
  13. 13.
    Jervis FX, Rein G (2015) Experimental study on the burning behaviour of pinus halepensis needles using small-scale fire calorimetry of live, aged and dead samples. Fire Mater. doi: 10.1002/fam.2293
  14. 14.
    Ganteaume A, Jappiot M, Curt T, Lampin, C, Borgniet L (2014) Flammability of litter sampled according to two different methods: comparison of results in laboratory experiments. Int J Wildland Fire 23(8): 1061–1075 . doi: 10.1071/WF13045.CrossRefGoogle Scholar
  15. 15.
    Varner JM, Kane JM, Kreye JK, Engber E (2015) The flammability of forest and woodland litter: a synthesis. Curr For Rep 91–99. doi: 10.1007/s40725-015-0012-x Google Scholar
  16. 16.
    Jaganathan S, Tafreshi HV, Pourdeyhimi B (2008) A case study of realistic two-scale modeling of water permeability in fibrous media. Sep Sci Technol 43(8): 1901–1916 . doi: 10.1080/01496390802063960 CrossRefGoogle Scholar
  17. 17.
    Santoni P, Bartoli P, Simeoni A, Torero J (2014) Bulk and particle properties of pine needle fuel beds influence on combustion. Int J Wildland Fire 23(8): 1076–1086 . doi: 10.1071/WF13079 CrossRefGoogle Scholar
  18. 18.
    Rostami A, Murthy J, Hajaligol M (2003) Modeling of a smoldering cigarette. J Anal Appl Pyrolysis 66(1–2): 281–301. doi: 10.1016/S0165-2370(02)00117-1 CrossRefGoogle Scholar
  19. 19.
    He F, Behrendt F (2011) Experimental investigation of natural smoldering of char granules in a packed bed. Fire Saf J 46(7): 406–413 . doi: 10.1016/j.firesaf.2011.06.007 CrossRefGoogle Scholar
  20. 20.
    Curt T, Schaffhauser A, Borgniet L, Dumas C, Estève R, Ganteaume A, Jappiot M, Martin W, N’Diaye A, Poilvet B (2011) Litter flammability in oak woodlands and shrublands of southeastern France. For Ecol Manag 261(12): 2214–2222 . doi: 10.1016/j.foreco.2010.12.002 CrossRefGoogle Scholar
  21. 21.
    Ganteaume A, Marielle J, Corinne LM, Thomas C, Laurent B (2011) Effects of vegetation type and fire regime on flammability of undisturbed litter in Southeastern France. For Ecol Manag 261(12): 2223–2231 . doi: 10.1016/j.foreco.2010.09.046 CrossRefGoogle Scholar
  22. 22.
    Spielman L, Goren SL (1968) Model for predicting pressure drop and filtration efficiency in fibrous media. Environ Sci Technol 2(4): 279–287 . doi: 10.1021/es60016a003 CrossRefGoogle Scholar
  23. 23.
    Ruth D, Ma H (1992) On the derivation of the forchheimer equation by means of the averaging theorem. Transp Porous Media 7(3): 255–264 . doi: 10.1007/BF01063962 CrossRefGoogle Scholar
  24. 24.
    Zeng Z, Grigg R (2006) A criterion for non-darcy flow in porous media. Transp Porous Media 63(1): 57–69 . doi: 10.1007/s11242-005-2720-3 CrossRefGoogle Scholar
  25. 25.
    Forrest W, Ovington J (1970) Organic matter changes in an age series of pinus radiata plantations. Br Ecol Soc 7(1): 177–186 .
  26. 26.
    Fernandes PM, Rego FC (1998) A new method to estimate fuel surface area-to-volume ratio using water immersion. Int J Wildland Fire 8(2): 59–66 . doi: 10.1071/WF9980059 CrossRefGoogle Scholar
  27. 27.
    Rein G (2009) Smouldering combustion phenomena in science and technology. Int Rev Chem Eng 1:3–18 .
  28. 28.
    Hadden RM, Rein G, Belcher CM (2013) Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat. 34(2): 2547–2553 . doi: 10.1016/j.proci.2012.05.060 CrossRefGoogle Scholar
  29. 29.
    Fehrmann S (2015) Study on radiata pine forest litter sampling and its incidence on combustion. MSc, Pontificia Universidad Católica de Chile.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sebastian Fehrmann
    • 1
  • Wolfram Jahn
    • 1
    • 2
  • Juan de Dios Rivera
    • 1
  1. 1.Mechanical and Metallurgical EngineeringPontificia Universidad Católica de ChileSantiagoChile
  2. 2.National Research Center for Integrated Natural Disaster Management CONICYT/FONDAP/15110017SantiagoChile

Personalised recommendations