Fire Technology

, 45:201 | Cite as

Scale Tests of Smoke Filling in Large Atria

  • J. A. Capote
  • D. Alvear
  • O. V. Abreu
  • M. Lázaro
  • P. Espina


The large Atriums of airports and railway stations facilitate the access to transport vehicles including shopping malls, cultural spaces, etc. For this reason, they are used by an elevated number of passengers and visitors. Numerous malls contain a large atrium too, as a principal access or as a food court, and they usually have high occupant loads. In case of fire, the smoke can affect human health seriously, and people may be unable to reach a safe place before being overcome by the conditions created by the fire. The traditional approach to fire protection by compartmentation is not applicable to these large volume spaces and the ability of sprinklers to suppress fire in spaces with high ceilings is limited. This work evaluated—using scale tests, fire computer modeling and analytical methods—a comparative analysis of the different results obtained for the smoke control in large atria when the smoke filling approach is applied. Smoke layer and plume temperatures have been registered during the scale test—based on the Froude Modeling—and they have been compared opposite to the FDS scale simulation and the FDS large scale simulation. Smoke layer descend has been studied and compared for the scale test, the computer simulations developed and the empirical equations used. The results demonstrated that the evacuation time calculation is conservative when the zone computer model CFAST, the field computer model FDS or the empirical equations are used, although it turns out to be difficult to define the interface height based on the temperatures registered during the scale tests. The zone computer models generate results faster than field computer models or smoke tests, so it would be necessary to develop better calculation algorithms to define the smoke layer interface.


scale tests smoke filling atrium interface height fire computer simulations 



Specific heat (kJ/kg K)


Acceleration of gravity (m/s2)


1.1 (m/kW1/3 s)


Length (m)


Length in the full-scale facility (m)


Length in the model (m)

\( \dot{m} \)

Mass flow (kg/s)


Time (s)


Transport time lag of plume (s)


Time in the full-scale facility (s)


Growth time (s)


Time in the model (s)


Transport time lag of plume (s)


Total transport lag time (s)


Position in the full-scale facility (m)


Position in the model (m)


Height of the first indication of smoke above the fire surface (m)


Interface height (m)


Mean flame height (m)


Virtual origin height (m)


Cross-sectional area of the atrium (m2)


Fire surface (m2)






Fire diameter (m)


Ceiling height above the fire (m)

\( \dot{Q} \)

Heat release rate (kW)

\( \dot{Q}_{C} \)

Convective heat release rate of fire (kW)


Heat release rate in the full-scale facility (kW)


Heat release rate in the model (kW)


Ambient temperature (K)


Centerline plume temperature (K)


Temperature in the full-scale facility (K)


Cold layer temperature (K)


Temperature in the model (K)


Ambient temperature (K)


Hot layer temperature (K)


Velocity (m/s)


Velocity in the full-scale facility (m/s)


Velocity in the model (m/s)


Volumetric flow in the full-scale facility (m3/s)


Volumetric flow in the model (m3/s)


Heat combustion (kJ/kg)


Pressure difference in the full-scale facility (Pa)


Pressure difference in the model (Pa)


−0.33 (m/kW1/3 s)


Density of the gas in the full-scale facility (kg/m3)


Density of the gas in the model (kg/m3)


Outside air density (kg/m3)


Convective fraction of heat release (dimensionless)



The authors would like to acknowledge the Ministry of Housing of the Government of Spain, whose support made possible that this research project was developed (VIV/4123/2007, published BOE nº 32 on February 6th, 2008).


  1. 1.
    Klote, J.H., Milke, J.A. 2002 Principles of Smoke Management. Refrigerating and Air Conditioning Engineers, Inc., Atlanta.Google Scholar
  2. 2.
    Heskestad, G. (1983) Virtual Origins of Fire Plumes. Fire Safety Journal 5(2), 109–114.CrossRefGoogle Scholar
  3. 3.
    Nowler SP (1987) Enclosure environment characterization testing for the baseline validation of computer fire simulation codes, NUREG/CR-4681, SAND 86-1296, Sandia National LaboratoriesGoogle Scholar
  4. 4.
    Mulholland, G. et al. 1981 Smoke Filling in an Enclosure. Fire Science and Technology 1(1), 1–31.CrossRefGoogle Scholar
  5. 5.
    Cooper LY, Stroup DW (1982) Calculating safe egress time (ASET)—a computer program and user’s guide. NBSIR 82-2578, National Bureau of StandardsGoogle Scholar
  6. 6.
    Hagglund B, Jansson R, Nireus K (1985) Smoke filling experiments in a 6×6×6 meter enclosure. FOA report C 20585-D6, National Defense Research Institute of Sweden, StockholmGoogle Scholar
  7. 7.
    Chung, K·C., Tung, H. 2005 A Simplified Model for Smoke Filling Time Calculation with Sprinkler Effects. Journal of Fire Sciences. 23(4), 279–301.CrossRefGoogle Scholar
  8. 8.
    Kerber, S., Milke, M.A. 2007 Using FDS to Simulate Smoke Layer Interface Height in a Simple Atrium. Fire Technology 43(1), 45–75.CrossRefGoogle Scholar
  9. 9.
    Mowrer, F·W. 1999 Enclosure Smoke Filling Revisited. Fire Safety Journal 33(2), 93–114.CrossRefGoogle Scholar
  10. 10.
    Chow, W·K. 1997 On the Use of Time Constants for Specifying the Smoke Filling Process in Atrium Halls. Fire Safety Journal 28(2), 165–177.CrossRefGoogle Scholar
  11. 11.
    GIDAI. Modelado Físico del Movimiento de Humos en caso de Incendio en Atrios. Ministerio de Vivienda. Estudio en desarrolloGoogle Scholar
  12. 12.
    Karlsson, B., Quintiere, J.G. 2000 Enclosure Fire Dynamics. CRC Press, London.Google Scholar
  13. 13.
    Morton BR, Taylor G, Turner JS (1956) Turbulent Gravitational Convection from Maintained and Instantaneous Sources. Proceeding of the Royal Society of London 234(1196):1–23MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    NFPA 92B, “Guide for Smoke Management Systems in Malls, Atria, and Larges Area”, National Fire Protection Association. Quincy, 2000 EditionGoogle Scholar
  15. 15.
    Newmann, J.S. 1988 Principles of Fire Detection. Fire Technology 24(2), 116–127.CrossRefGoogle Scholar
  16. 16.
    Mowrer, F·W. (1990) Lag Times Associated with Fire Detection and Suppression. Fire Technology 26(3), pp. 244–265.CrossRefGoogle Scholar
  17. 17.
    Heskestad G, Delichatsios MA (1977) “Environments of Fire Detectors” – Phase I: Effect of Fire Size, ceiling height and materials. Volumes I and II – Measumerents (NBS-GCR–77-86; NBS-GCR-77-95). Gaitherburg, Md.: National Bureau of StandardsGoogle Scholar
  18. 18.
    Cooper LY (1981) An experimental study of upper hot layer stratification in full scale multiroom fire scenarios. Paper 81-HT-9, American Society of Mechanical EngineersGoogle Scholar
  19. 19.
    Chow, W·K. and Lo, A.C·W. 1995 Scale modeling Studies on Atrium Smoke Movement and the Smoke Filling Process. Journal of Fire Protection Engineering 7(2), pp. 56–64.Google Scholar
  20. 20.
    Chow, W·K. 2008 Scale Modeling on Natural Smoke Filling in an Atrium. Heat Transfer Engineering 29(1), 76–84.CrossRefGoogle Scholar
  21. 21.
    Quintiere JG, McCaffrey BJ, Kashiwagi T (1978) A scaling study of a corridor subject to a roomfire. Combust Sci Technol 18:1–19CrossRefGoogle Scholar
  22. 22.
    McGrattan KB, Forney GP (2006) Fire dynamics simulator (version 4): user’s manual, NIST Special Publication 1019. National Institute of Standards and Technology (NIST), GaithersburgGoogle Scholar
  23. 23.
    Peacock et al (2005) Consolidated model for fire and smoke transport – CFAST (version 6), NIST Special Publication 1041. National Institute of Standards and Technology (NIST), GaithersburgGoogle Scholar
  24. 24.
    Capote JA, Alvear D, Lázaro M, Espina P (2007) Informe Resumen de la Investigación 8: Estudio del Movimiento de los Humos en caso de Incendio en Grandes Atrios de Estaciones Ferroviarias de Pasajeros mediante Modelado y Simulación Computacional. Servicio de Publicaciones de la Universidad de CantabriaGoogle Scholar
  25. 25.
    Capote, J.A., Alvear D., Abreu O. V., Lázaro M., Espina P. 2008 La Influencia de la Temperatura Exterior sobre los Sistemas de Ventilación Natural en Grandes Atrios. Informes de la Construcción 60, 511, 49–57, julio-septiembreGoogle Scholar
  26. 26.
    Capote JA, Alvear D, Abreu OV, Lázaro M, Espina P (2007) Análisis de las Estrategias para el Control de los Humos del Incendio en Atrios mediante Modelado y Simulación Computacional, Advanced Research Workshop “Fire Computer Modeling”, Universidad de CantabriaGoogle Scholar
  27. 27.
    Capote JA, Alvear D, Abreu OV, Lázaro M, Espina P (2008) Modelado y Simulación Computacional para el Análisis del Control de los Humos del Incendio en Atrios. II Jornadas de Investigación en Construcción Instituto de Ciencias de la Construcción Eduardo Torroja – CSIC. Madrid, 22–24 de Mayo de 2008Google Scholar
  28. 28.
    GIDAI. Estudio y Elaboración Conjunta de unas Bases de Proyecto Prescriptivas para la Seguridad contra Incendios en Estaciones Ferroviarias de Pasajeros. Ministerio de Fomento. Estudio en desarrolloGoogle Scholar
  29. 29.
    Almand K, Koffel WE et al (eds) (2004) National Institute of Standards and Technology American Case Study, Performance Based Design Analysis Seattle Transportation Center, vol 1. Fifth international conference on performance-based codes and fire safety design methods, Luxembourg, 2004Google Scholar
  30. 30.
    Yasushi, T., Seiji, Y., Daisuke, K., Yuji, H. (2005) Fire Behavior of A Large-Sized Kiosk in Railway Stations. AIJ Journal of Technology and Design 22, 237–242.Google Scholar
  31. 31.
    Park WH, Kim DH, Chang HC (2006) Numerical predictions of smoke movement in a subway station under ventilation. Proceedings of the ITA-AITES 2006 World Tunnel Congress and 32nd ITA General Assembly, vol 21(3–4), p 304Google Scholar
  32. 32.
    Thirteenth Meeting of the UJNR Panel of Fire Research and Safety, volume 1. NIST, 1996Google Scholar
  33. 33.
    Klote JH (1994) Method of predicting smoke movement in atria with application to smoke management. Building and Fire Research Laboratory, National Institute of Standards and TechnologyGoogle Scholar
  34. 34.
    Lázaro M (2008) Influencia de la Discretización Espacial en la Exactitud del Modelado de Fluidodinámica Computacional de Incendios, Tesis Doctoral, Universidad de CantabriaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. A. Capote
    • 1
  • D. Alvear
    • 1
  • O. V. Abreu
    • 1
  • M. Lázaro
    • 1
  • P. Espina
    • 1
  1. 1.GIDAI Group, Dpto. de Transportes y Tecnología de Proyectos y ProcesosUniversity of CantabriaSantanderSpain

Personalised recommendations