Use of Methods of Spectral Modeling and Computer-Aided Prediction of Viscoelasticity to Determine Functionality of Nonwoven Polymeric Materials

Use of methods of spectral modeling and computer-aided prediction of viscoelasticity of nonwoven polymeric materials to determine their functionality is studied. The proposed methods can be used to solve technological problems of sampling nonwoven polymeric materials possessing the desired functional and performance properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. G. Makarov, Izv. Vuz. Tekhnol. Tekst. Prom., No. 2, 12-16 (2000).

  2. 2.

    A. G. Makarov, Izv. Vuz. Tekhnol. Tekst. Prom., No. 2, 13-17 (2002).

  3. 3.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 5, 44-47 (2013).

  4. 4.

    V. V. Golovina, P. P. Rymkevich, et al., Khim. Volokna, No. 6, 33-40 (2013).

  5. 5.

    P. P. Rymkevich, A. A. Romanova, et al., J. Macromol. Sci. Part B: Physics, 52, No.12, 1829-1847 (2013).

  6. 6.

    A. G. Makarov, G. Y. Slutsker, and N. V. Drobotun, Techn. Phys., 60, No. 2, 240-245 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    A. G. Makarov, G. Y. Slutsker, et al., Fiz. Tv. Tela, 58, No. 4, 814-820 (2015).

  8. 8.

    A. G. Makarov, A. V. Demidov, et al., Khim. Volokna, No. 6, 60-67 (2015).

  9. 9.

    A. G. Makarov, N. V. Pereborova, et al., Ibid., 68-72.

  10. 10.

    A. G. Makarov, N. V. Pereborova, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 5 (359), 48-58 (2015).

  11. 11.

    A. G. Makarov, A. V. Demidov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 6 (360), 194-205 (2015).

  12. 12.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 1, 37-42 (2016).

  13. 13.

    A. G. Makarov, A. V. Demidov, et al., Khim. Volokna, No. 2, 52-58 (2016).

  14. 14.

    A. V. Demidov, A. G. Makarov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 1 (367), 250-258 (2017).

  15. 15.

    A. G. Makarov, N. V. Pereborova, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 2 (368), 309-313 (2017).

  16. 16.

    A. G. Makarov, N. V. Pereborova, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 4 (370), 287-292 (2017).

  17. 17.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 1, 69-73 (2017).

  18. 18.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 2, 59-63 (2017).

  19. 19.

    A. V. Demidov, A. G. Makarov, et al., Khim. Volokna, No. 4, 46-51 (2017).

  20. 20.

    N. V. Pereborova, A. V. Demidov, et al., Khim. Volokna, No. 2, 36-39 (2018).

  21. 21.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 3, 94-97 (2018).

  22. 22.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 4, 54-56 (2018).

  23. 23.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 4, 117-120 (2018).

  24. 24.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 5, 89-92 (2019).

  25. 25.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 6, 3-6 (2018).

  26. 26.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 6, 87-90 (2018).

  27. 27.

    N. V. Pereborova, A. V. Demidov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 2 (374), 251-255 (2018).

  28. 28.

    N. V. Pereborova, A. G. Makarov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 3 (375), 253-257 (2018).

  29. 29.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 5, 68-70 (2019).

  30. 30.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 5, 71-73 (2019).

  31. 31.

    N. V. Pereborova, A. V. Demidov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 2 (380), 192-198 (2019).

  32. 32.

    N. V. Pereborova, A. V. Demidov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 3 (381), 242-247 (2019).

  33. 33.

    N. V. Pereborova, A. G. Makarov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., 41, No. 3, 90-99 (2018).

  34. 34.

    N. V. Pereborova, A. G. Makarov, et al., Vestn. Sankt-Peterburg. Gos. Univ. Tekhnol. Diz., Ser. 1, Estestv. Tekhnich. Nauki, No. 1, 109-119 (2018).

  35. 35.

    N. V. Pereborova, Dizain. Materialy. Tekhnologiya, No. 4 (39), 98-102 (2015).

  36. 36.

    N. V. Pereborova, Vestn. Sankt-Peterburg. Gos. Univ. Tekhnol. Diz., Ser. 1, Estestv. Tekhnich. Nauki, No. 4, 60-66 (2015).

  37. 37.

    N. V. Pereborova, Izv. Vuz. Tekhnol. Tekst. Prom., 29, No. 3, 11-19 (2015).

    Google Scholar 

  38. 38.

    N. V. Pereborova, ibid., 35-42.

Download references

This work was financed under the grant of the President of the Russian Federation MK-1210.2020.8.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Egorov.

Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 85-88, May-June, 2020

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Egorov, M.A., Makarova, A.A., Konovalov, A.S. et al. Use of Methods of Spectral Modeling and Computer-Aided Prediction of Viscoelasticity to Determine Functionality of Nonwoven Polymeric Materials. Fibre Chem 52, 219–222 (2020). https://doi.org/10.1007/s10692-020-10184-9

Download citation