Criteria for Qualitative Assessment of Relaxation-Recovery Properties of Polymer Textile Materials for Technical Purposes

New criteria for the qualitative assessment of the relaxation-recovery properties of polymer textile materials for technical purposes, obtained on the basis of the study of parameters-characteristics of mathematical models of the relaxation and recovery processes of these materials, are proposed. The developed criteria allow carrying out a qualitative assessment of the relaxation-recovery properties of polymer textile materials for technical purposes, which significantly reduces the technical and economic costs of designing these materials with specified relaxation and recovery properties, since there is no need to manufacture pilot batches of these materials.

This is a preview of subscription content, access via your institution.

Fig. 1.

References

  1. 1.

    P. P. Rymkevich, A. A. Romanova, et al., “The energy barriers model for the physical description of the viscoelasticity of synthetic polymers: application to the uniaxial orientational drawing of polyamide films,” J. Macromol. Sci. B, 52, No. 12, 1829-1847 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    A. G. Makarov, G. Ya. Slutsker, and N. V. Drobotun, “Creep and fracture kinetics of polymers,” Tech. Phys., 60, No. 2, 240-245 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    A. G. Makarov, G. Ya. Slutsker, et al., “Initial stage of stress relaxation in oriented polymers,” Fiz. Tv. Tela, 58, No. 4, 814-820 (2016).

    Google Scholar 

  4. 4.

    A. G. Makarov, A. V. Demidov, et al., Khim. Volokna, No. 6, 60-67, 68-72 (2015).

    Google Scholar 

  5. 5.

    A. G. Makarov, N. V. Pereborova, et al., “Development of methodology for the comparative analysis of deformation and relaxation properties of aramid yarns and textile materials based on them,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 5 (359), 48-58 (2015).

    Google Scholar 

  6. 6.

    A. G. Makarov, A. V. Demidov, et al., “Modeling and prediction of estimated relaxation and deformation properties of the polymer parachute line,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 6 (360), 194-205 (2015).

    Google Scholar 

  7. 7.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 1, 37-42 (2016).

  8. 8.

    A. G. Makarov, A. V. Demidov, et al., Khim. Volokna, No. 2, 52-58 (2016).

  9. 9.

    A. V. Demidov, A. G. Makarov, et al., “Forecasting of deformation-relaxation properties of polyamide fabric used to make the canopy,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 1 (367), 250-258 (2017).

    Google Scholar 

  10. 10.

    A. G. Makarov, N. V. Pereborova, et al., “Qualitative analysis of deformation-relaxation properties of aramidic cords for mine rescue purposes,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 2 (368), 309-313 (2017).

    Google Scholar 

  11. 11.

    A. G. Makarov, N. V. Pereborova, et al., “Mathematical modeling of deformation-relaxation processes of polymeric materials under variable temperature conditions,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 4 (370), 287-292 (2017).

    Google Scholar 

  12. 12.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 1, 69-73 (2017).

  13. 13.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 2, 59-63 (2017).

  14. 14.

    A. V. Demidov, A. G. Makarov, et al., Khim. Volokna, No. 4, 46-51 (2017).

  15. 15.

    N. V. Pereborova, A. V. Demidov, et al., Khim. Volokna, No. 2, 36-39 (2018).

  16. 16.

    A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 3, 94-97 (2018).

  17. 17.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 4, 54-56, 117-120 (2018).

  18. 18.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 5, 89-92 (2019).

  19. 19.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 6, 3-6, 87-90 (2018).

    Google Scholar 

  20. 20.

    N. V. Pereborova, A. V. Demidov, et al., “Methods of mathematical modeling and qualitative analysis of relaxationdeformation processes of aramid textile materials,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 2 (374), 251-255 (2018).

    Google Scholar 

  21. 21.

    N. V. Pereborova, A. G. Makarov, et al., “Methods of simulation and comparative analysis of shrinkage and deformation-recovery properties of aramid textile materials,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 3 (375), 253-257 (2018).

    Google Scholar 

  22. 22.

    N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 5, 68-70, 71-73 (2019).

  23. 23.

    N. V. Pereborova, A. V. Demidov, et al., “Spectral analysis of viscoelasticity of geotextile non-woven fabrics and its application for estimating their functionality,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 2 (380), 192-198 (2019).

    Google Scholar 

  24. 24.

    N. V. Pereborova, A. V. Demidov, et al., “Increasing the competitiveness of polymeric textile materials on the basis of application of integral criteria of reliability of mathematical modeling of viscoelasticity at the stage of their design and organization of production,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 3 (381), 242-247 (2019).

    Google Scholar 

  25. 25.

    N. V. Pereborova, A. V. Demidov, et al., “Mathematical modeling and design forecasting of viscoelasticity of geotextile non-woven fabrics as a means of evaluating their functional-operational purpose,” Izv. Vuzov: Tekhnol. Tekst. Prom-sti, No. 4 (382), 229-234 (2019).

    Google Scholar 

Download references

The study was financed within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation. Project No. FSEZ-2020-0005.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Pereborova.

Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 39-42, May – June, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereborova, N.V. Criteria for Qualitative Assessment of Relaxation-Recovery Properties of Polymer Textile Materials for Technical Purposes. Fibre Chem 52, 168–172 (2020). https://doi.org/10.1007/s10692-020-10174-x

Download citation