Advertisement

Fibre Chemistry

, Volume 46, Issue 2, pp 106–112 | Cite as

Composition of Water-Soluble Substances in Polyamide-6 Produced on a Cascade Polyamide Production Line

  • Yu. M. Bazarov
  • T. L. Khromova
  • S. Ya. Sadivskii
Chemistry and Technology of Chemical Fibres
  • 60 Downloads

Long-term observations of the composition of unextracted granulate and extraction water generated during the industrial process for producing PA-6 on a Polymer Engineering cascade polyamide production line have shown that despite fluctuations in the process parameters for synthesis of PA-6, on this line the amount of cyclic oligomers exceeds the equilibrium value by a factor of 1.6-1.7 and remains practically constant. The amount of residual caprolactam, on the other hand, depends considerably on fluctuation in these parameters, in a number of cases turning out to be less than the equilibrium values as a result of entrainment of its vapor from the polycondensation reactors by the stream of inert gas. From the data obtained, it follows that during the cyclic oligomer extraction process under commercial conditions, cyclic oligomers with n e” 5 are not completely removed. Concentrations of cyclic oligomers in the polymer granulate that are systematically higher than the equilibrium values should be considered as evidence that they are formed in excess in the “oligomer splitting” stage, preceding the actual hydrolytic polymerization of caprolactam, and that they slowly disappear during the latter stage.

Keywords

Extraction Water Caprolactam Initial Water Content Polycondensation Reactor Cyclic Oligomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. D. Katorzhnov, Khim. Volokna, No. 1, 3-8 (1966).Google Scholar
  2. 2.
    H. K. Reimshuessel, J. Polymer Sci.: Macromol. Rev., 12, 65-139 (1977).Google Scholar
  3. 3.
    S. Russo, Chim. Ind., 63, No. 6, 412-416 (1981).Google Scholar
  4. 4.
    F. Wiloth, Makromol. Chem., 15, No. 2/3, 98 (1955).CrossRefGoogle Scholar
  5. 5.
    H. Yomoto, Bull. Chem. Soc. Japan, 28, No. 2, 94-100 (1955).CrossRefGoogle Scholar
  6. 6.
    H. K. Reimshuessel, J. Polymer Sci., 41, No. 138, 457-466 (1959).CrossRefGoogle Scholar
  7. 7.
    Yu. M. Bazarov, Dissertation in competition for the Academic Degree of Candidate, IKhTI, Ivanovo (1980), p. 132.Google Scholar
  8. 8.
    L. N. Mizerovskii, A. K. Kuznetsov et al., Vysokomol. Soedin. A, 24, No. 6, 1174-1179 (1982).Google Scholar
  9. 9.
    L. N. Mizerovskii, D. L. Siganov et al., Vysokomol. Soedin. A, 33, No. 5, 967-972 (1991).Google Scholar
  10. 10.
    Yu. M. Tikhomirova, V. I. Bezvereshko, and D. N. Arkhangel’skii, Khim. Volokna, No. 6, 37-39 (1966).Google Scholar
  11. 11.
    L. N. Mizerovskii and V. A. Padokhin, Khim. Volokna, No. 6, 8-22 (2012).Google Scholar
  12. 12.
    S. Mori and T. Takeuchi, J. Chromatog., 50, No. 2, 419-428 (1970).CrossRefGoogle Scholar
  13. 13.
    S. Mori and T. Takeuchi, J. Chromatog., 49, No. 2, 230-238 (1970).CrossRefGoogle Scholar
  14. 14.
    J. U. Andrews, F. R. Jones, and J. A. Semlyen, Polymer., 15, No. 7, 420-424 (1974).CrossRefGoogle Scholar
  15. 15.
    S. Mochizuki and N. Ito, Chem. Eng. Sci., 28, 1139-1147 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yu. M. Bazarov
    • 1
  • T. L. Khromova
    • 1
  • S. Ya. Sadivskii
    • 2
  1. 1.Ivanov State University of Chemistry and TechnologyIvanovoRussia
  2. 2.KuibyshevAzot OAOTogliattiRussia

Personalised recommendations