Advertisement

Fibre Chemistry

, Volume 45, Issue 5, pp 268–273 | Cite as

PMR Study of Structural Features of Ionic Liquids Based on 1-Alkyl-3-Methylpyridinium and Mechanism of their Interaction with Cellulose

  • E. S. Sashina
  • D. A. Kashirskii
  • S. Jankowski
Article

Ionic liquids (IL) based on 1-alkyl-3-methylpyridinium and cellulose solutions in them were studied experimentally using PMR. It was shown that the chemical shifts for H2 and H6 of the pyridine ring changed most upon changing the length of the alkyl substituent in the IL cation and in the cellulose solutions. The experimental results could be useful for explaining the interaction mechanism between natural polymers and IL.

Keywords

Cellulose Ionic Liquid Cellulose Solution Pyridinium Salt Acetate Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Chauvin, B. Gilbert, and I. Guibard, Chem. Commun., No. 23, 1715-1716 (1990).Google Scholar
  2. 2.
    J. S. Wilkes and M. J. Zaworotko, Chem. Commun., No. 13, 965-967 (1992).Google Scholar
  3. 3.
    G. Laus, G. Bentivoglio, et al., Lenzinger Ber., 84, 71-85 (2005).Google Scholar
  4. 4.
    P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, John Wiley & Sons, Weinheim (2008), 721 pp.Google Scholar
  5. 5.
    R. P. Swatloski, R. D. Rogers, and J. D. Holbrey, Pat. WO 2003029329 A2, IPC C08J, “Dissolution and Processing of Cellulose Using Ionic Liquids,” Apr. 10, 2003.Google Scholar
  6. 6.
    C. Cuissinat, P. Navard, and T. Heinze, Carbohydr. Polym., 72, 590-596 (2008).CrossRefGoogle Scholar
  7. 7.
    L. Jin, P. Howlett, et al., J. Mater. Chem., 21, 10171-10178 (2011).CrossRefGoogle Scholar
  8. 8.
    D. Han and K. H. Row, Molecules, No. 15, 2405-2426 (2010).Google Scholar
  9. 9.
    H. Olivier-Bourbigou, L. Magna, and D. Morvan, Appl. Catal., A, No. 1-2, 1-56 (2010).Google Scholar
  10. 10.
    H. Ohno, Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, New Jersey (2005), p. 377.CrossRefGoogle Scholar
  11. 11.
    R. J. Soukup-Hein, M. M. Warnke, and D. W. Armstrong, Anal. Chim. Acta, 661, No. 1, 1-16 (2010).CrossRefGoogle Scholar
  12. 12.
    M. J. Earle and K. R. Seddon, Pure Appl. Chem., 72, No. 7, 1391-1398 (2000).CrossRefGoogle Scholar
  13. 13.
    R. D. Rogers and K. R. Seddon, Science, 302, 792-793 (2003).CrossRefGoogle Scholar
  14. 14.
    S. S. Y. Tan and D. R. MacFarlane, Top. Curr. Chem., 290, 311-339 (2010).CrossRefGoogle Scholar
  15. 15.
    R. P. Swatloski, S. K. Spear, et al., J. Am. Chem. Soc., 124, 4974-4975 (2002).CrossRefGoogle Scholar
  16. 16.
    T. Heinze, K. Schwikal, and S. Barthel, Macromol. Biosci., No. 5, 520-525 (2005).Google Scholar
  17. 17.
    E. S. Sashina and N. P. Novoselov, Zh. Obshch. Khim., 79, No. 6, 1057-1062 (2009).Google Scholar
  18. 18.
    M. L. T. N. Basa, Ionic Liquids: Solvation Characteristics and Cellulose Dissolution, Toledo (2010), 179 pp.Google Scholar
  19. 19.
    E. S. Sashina, D. A. Kashirskii, et al., Zh. Obshch. Khim., 82, No. 12, 2040-2045 (2012).Google Scholar
  20. 20.
    C. Graenacher, US Pat. No. 1,943,176, “Cellulose Solution,” Jan. 9, 1934.Google Scholar
  21. 21.
    J. R. Harjani, R. D. Singer, et al., Green Chem., No. 11, 83-90 (2009).Google Scholar
  22. 22.
    A. B. Pereiro, A. Rodriguez, et al., J. Chem. Eng. Data, No. 56, 4356-4363 (2011).Google Scholar
  23. 23.
    N. V. Sastry, N. M. Vaghela, et al., J. Colloid Interface Sci., No. 371, 52-61 (2012).Google Scholar
  24. 24.
    E. S. Sashina, D. A. Kashirskii, and E. V. Martynova, Zh. Obshch. Khim., 82, No. 4, 643-649 (2012).Google Scholar
  25. 25.
    Y. Fukaya, K. Hayashi, et al., Green Chem., No. 10, 44-46 (2008).Google Scholar
  26. 26.
    A. Kokorin, Ionic Liquids: Applications and Perspectives, InTech, Rijeka, Croatia (2011), p. 674.CrossRefGoogle Scholar
  27. 27.
    Z. Shengdong, W. Yuanxin, et al., Green Chem., No. 8, 325-327 (2006).Google Scholar
  28. 28.
    M. Gericke, P. Fardim, and T. Heinze, Molecules, No. 17, 7458-7502 (2012).Google Scholar
  29. 29.
    T.-J. Park, S. Murugesan, and R. J. Linhardt, ACS Symposium Series No. 1017, Am. Chem. Soc., Washington (2009), pp. 133-152.Google Scholar
  30. 30.
    T. Erdmenger, C. Haensch, and R. Hoogenboom, Macromol. Biosci., No. 7, 440-445 (2007).Google Scholar
  31. 31.
    N. P. Novoselov, E. S. Sashina, et al., Khim. Volokna, No. 2, 51 (2007).Google Scholar
  32. 32.
    R. C. Remsing, R. P. Swatloski, et al., Chem. Commun., 1271-1273 (2006).Google Scholar
  33. 33.
    L. Feng and Z. Chen, J. Mol. Liq., No. 142, 1-5 (2008).Google Scholar
  34. 34.
    B. Philipp, H. Schleicher, and W. Wagenknecht, Cellul. Chem. Technol., 12, No. 5, 529-552 (1978).Google Scholar
  35. 35.
    J. Zhang, H. Zhang, et al., Phys. Chem. Chem. Phys., No. 12, 1941-1947 (2010).Google Scholar
  36. 36.
    H. Shimura, M. Yoshio, et al., J. Am. Chem. Soc., 130, 1759-1765 (2008).CrossRefGoogle Scholar
  37. 37.
    M. R. Chierotti and R. Gobetto, Chem. Commun., 1621-1634 (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. S. Sashina
    • 1
  • D. A. Kashirskii
    • 1
  • S. Jankowski
    • 2
  1. 1.St. Petersburg State University of Technology and DesignSt. PetersburgRussia
  2. 2.Lodz University of TechnologyLodzPoland

Personalised recommendations