Advertisement

Fibre Chemistry

, Volume 45, Issue 3, pp 133–139 | Cite as

Features of thermochemical transformations during oxidation of m-,p-aramid–polyacrylonitrile fibrous composites

  • T. V. Druzhinina
  • A. V. Istomin
Chemistry and Technology of Chemical Fibres
  • 39 Downloads

Thermal oxidation of m-,p-aramid − polyacrylonitrile polymer fibrous composites and their components was studied by instrumental analytical methods. It was found that mainly polyacrylonitrile fibre underwent chemical and structural transformations under the thermal oxidation conditions. Incorporation of up to 60% of it into a spinning mixture increased the oxygen index to the level of a thermally stable material (37%).

Keywords

Thermal Oxidation Oxygen Index Fibrous Composite Coke Residue Maximum Decomposition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. S. Zubkova and N. I. Konstantinova, Flame-Resistance of Textiles [in Russian], Inst. Inform. Tekhnol., Moscow, 2008, 228 pp.Google Scholar
  2. 2.
    N. S. Zubkova, Polymeric Materials with Increased Fire Hazard [in Russian], A. N. Kosygin MSTU, Moscow, 2004, 198 pp.Google Scholar
  3. 3.
    O. V. Strekalova, N. S. Zubkova, et al., Khim. Volokna, No. 1, 34–38 (2003).Google Scholar
  4. 4.
    K. E. Perepelkin, Reinforced Fibres and Fibrous Polymer Composites [in Russian], Nauchnye Osnovy i Tekhnologii, St. Petersburg, 2009, 380 pp.Google Scholar
  5. 5.
    N. N. Machalaba, G. A. Budnitskii, et al., Khim. Volokna, No. 4, 52–54 (2002).Google Scholar
  6. 6.
    Lirsot Ltd. Product. Thermal and flame-resistant arlan fibres and threads [in Russian]; URL: http://www.advtech.ru/lirsot/index.htm (accession date Sept. 12, 2012).
  7. 7.
    A. V. Volokhina, N. N. Babaeva, et al., Special-purpose Fibres and Threads: Production, Structure, Properties, Use: A Collection of Scientific Works [in Russian], No. 2, Sputnik+, Moscow, 2010, pp. 135–149.Google Scholar
  8. 8.
    T. V. Druzhinina and A. V. Istomin, Khim. Tekhnol., No. 6, 345–354 (2011).Google Scholar
  9. 9.
    A. V. Volokhina, V. N. Kiya-Oglu, et al., RU Pat. 23,107,101 C1, MPK D 01 F 11/16; “Method for production of thermally stable textiles,” Appl. Apr. 10, 2006; Publ. Nov. 20, 2007; Byull. No. 32.Google Scholar
  10. 10.
    A. V. Volokhina, V. N. Kiya-Oglu, et al, Vysokomol. Soedin., 52, No. 11, 2044–2048 (2010).Google Scholar
  11. 11.
    K. Nakanishi, Infrared Absorption Spectroscopy. Practical, Holden—Day, San Francisco, 1962.Google Scholar
  12. 12.
    GOST 12.1.044-89; Fire and Explosion Hazard of Substances and Materials. Nomenclature of Indicators and Methods for Their Determination; Eff. Jan. 1, 1991; Izdvo. Standartov, Moscow, 1989, 100 pp.Google Scholar
  13. 13.
    A. A. Konkin (ed.), Thermally and Flame-Resistant and Non-flammable Fibres [in Russian], Khimiya, Moscow, 1978, 424 pp.Google Scholar
  14. 14.
    O. A. Belyaeva, D. I. Krivtsov, et al, Khim. Volokna, No. 5, 7–13 (2012).Google Scholar
  15. 15.
    A. V. Istomin and T. V. Druzhinina, Khim. Volokna, No. 4, 28–32 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • T. V. Druzhinina
    • 1
  • A. V. Istomin
    • 1
  1. 1.Moscow State University of Design and TechnologyMoscowRussia

Personalised recommendations